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Abstract

In this paper, we propose new valid inequalities and extended formulations for the lot-sizing and

scheduling problem with sequence-dependent setups, which are derived by investigating the single-

period substructure of the problem. Specifically, we derive two new families of valid inequalities

and identify their facet-defining conditions. Additionally, we demonstrate that these inequalities

can be separated in polynomial time. After introducing the existing extended formulations for

the problem, we provide new extended formulations adapting decision variables representing the

time-flow and compare the theoretical strengths of the various formulations and valid inequali-

ties, including the proposed ones. Finally, we conduct computational experiments to demonstrate

the effectiveness of the proposed inequalities and formulations. The test results indicate that

the proposed inequalities and extended formulations facilitate tightening the linear programming

relaxation bounds.

Keywords: Production, Lot-sizing and scheduling problem, Sequence-dependent setup, Valid

inequality, Extended formulation

1. Introduction

1.1. Problem description

Traditional capacitated lot-sizing problems determine the sizes of the production lots of prod-

ucts for each period within a given planning horizon (Manne, 1958). The goal is to meet the

dynamic demand at the minimum cost while satisfying constraints such as limited production ca-

pacity and setup requirements. There are plenty of variations of the problem taking into account

additional characteristics (Quadt & Kuhn, 2008). One important extension is to consider the

sequence-dependent setup which indicates that the setup cost and time depend on both the item

that was produced previously and that which will be produced subsequently. In the presence of

the sequence-dependent setup, the problem needs to determine not only the lot sizes but also the
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sequence of the production because it affects both the total cost and available production capacity.

In this paper, we consider the lot-sizing and scheduling problem with sequence-dependent setups

(LSP-SQ). The formal description and mathematical formulation of the problem will be provided

in Section 1.3.

LSP-SQ has been widely investigated over the recent decades because of its importance in both

industrial and academic communities. Particularly, there is abundant research on the modeling

of LSP-SQ (refer to Pochet & Wolsey, 2006; Copil et al., 2017, for the comprehensive review on

different models). Among the various modeling frameworks, we consider the so-called big bucket

models which are natural extensions of the conventional capacitated lot-sizing model (Manne,

1958). In big bucket models, the planning horizon is divided into multiple periods of length

equal to the granularity of demand occurrence, for example, days. In each period, multiple items

can be produced, and the production sequence should be determined. As mentioned by Gupta &

Magnusson (2005), for big bucket models, the production sequence within each period is represented

as a cycle which is illustrated in Section 1.3.

Regarding computational complexity, LSP-SQ is an NP-hard problem. In particular, it is well-

known that even with a single item, the capacitated lot-sizing problem without the scheduling

decisions is already NP-hard (Bitran & Yanasse, 1982). Moreover, even with the given lot-sizing

decisions, the remaining scheduling problem is NP-hard because it can be reduced to the traveling

salesman problem (TSP). Because of the difficulty inherited from both, LSP-SQ is strongly NP-

hard.

One possible approach to tackle NP-hard problems is to exploit the substructures of the prob-

lems using polyhedral analysis. There are many cases where valid inequalities and extended formu-

lations which are the results of the polyhedral analysis, play a major role in improving the practical

solvability of NP-hard problems (Wolsey, 2020).

Regarding LSP-SQ, some research has been conducted on substructures. However, most of these

studies address the single-item substructure, where sequence-dependent setups between different

items cannot be incorporated. In this regard, we study the single-period substructure of LSP-SQ

incorporating the sequence-dependency, which is formally described in Section 2.

The contributions of this study are as follows. We propose new families of valid inequalities for

LSP-SQ which are derived from a polyhedral study on the single-period substructure. We analyze

their strengths and facet-defining conditions. Additionally, we demonstrate that the separation

problems of these inequalities can be solved in polynomial time. Subsequently, we introduce new

extended formulations adapting decision variables representing the time-flow. Their strengths are

analyzed and compared with those of the existing formulations, both theoretically and compu-

tationally. The results of the computational experiments on both single-period and multi-period

instances demonstrate the effectiveness of the newly proposed inequalities and extended formula-

tions.
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1.2. Literature review

Research on LSP-SQ includes studies dealing with various practical industrial problems (for

example Ŕıos-Soĺıs et al., 2020; Lee & Lee, 2020) and devising efficient solution approaches for

general problem instances (for example Guimarães et al., 2013; Carvalho & Nascimento, 2022).

In our literature review, we focus on polyhedral studies, such as valid inequalities and extended

formulations of LSP-SQ and related problems. For a comprehensive review including the industrial

problems and various solution approaches, refer to Zhu & Wilhelm (2006) and Copil et al. (2017).

Most polyhedral studies on the substructure of LSP-SQ have primarily considered the single-

item structure. For instance, Barany et al. (1984) studied a single-item uncapacitated lot-sizing

problem (ULSP) and provided a complete linear description of the convex hull of the ULSP in its

original space using valid inequalities, denoted as (l, S)–inequalities. Krarup & Bilde (1977) and

Eppen & Martin (1987) proposed extended formulations for ULSP which can provide an optimal

solution by solving their linear programming (LP) relaxations, based on the facility location and

shortest path reformulations, respectively. Subsequently, Küçükyavuz & Pochet (2009) provided an

explicit description of the convex hull of the ULSP with backlogging in the original space. Leung

et al. (1989) and Van Vyve (2007) addressed a single-item capacitated problem with constant

capacity. They analyzed the polyhedral structure, proposed facet-defining inequalities, and devised

polynomial-time solution algorithms. The results of the aforementioned studies on single-item

substructures have been successfully adapted to generalized problems with multiple items or time-

varying capacity.

Contrary to the single-item cases, there have been only a limited number of studies on the

single-period substructure, and even those studies did not consider the sequence-dependent setups.

Miller et al. (2003b) studied the single-period relaxation of a capacitated lot-sizing problem with

sequence-independent setups. By incorporating multiple items competing for a limited production

capacity, the authors derived valid inequalities and their facet-defining conditions. They considered

a special case in Miller et al. (2003a), where the demand and setup times were constant for all

items. In this special case, the authors proposed a polynomial-time algorithm and derived an ex-

tended formulation. More recently, Doostmohammadi & Akartunalı (2018) studied the two-period

substructure and derived facet-defining inequalities, but assumed zero setup times. Unfortunately,

these results cannot be directly applied to LSP-SQ because the sequence-dependent setups are not

considered. To the best of our knowledge, there is a lack of studies on the single-period substructure

of LSP-SQ incorporating sequence-dependent setups.

Meanwhile, the solution set of the single-period LSP-SQ is closely related to that of routing-

type problems such as the capacitated vehicle routing problem (CVRP) (Toth & Vigo, 2002) in

that, both problems select a subset of items to produce (or customers to visit) from the given sets

and determine the sequence of the production (or sequence of the visit). Particularly, because the

sequencing decision in a single period of LSP-SQ is to determine the order of production of items

which are decided to produce, it resembles the routing decision in CVRP which determines the
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order of visits of customers who are decided to visit. Therefore, the valid inequalities and extended

formulations of CVRP are also relevant to those of LSP-SQ. Gouveia (1995) studied the projection

of single-commodity flow formulations of CVRP. As a result of the projection, they derived valid

inequalities called multi-star inequalities. These results were generalized by Letchford et al. (2002)

and Letchford & Salazar-González (2006). Letchford et al. (2002) introduced generalized multi-

star inequalities and reported their computational effects. Letchford & Salazar-González (2006)

surveyed various formulations of CVRP and inequalities derived by the projection, and analyzed

the relations between them. Later, Letchford & Salazar-González (2015) provided stronger formu-

lations. These results are relevant to our problem, as discussed in Section 3. However, in contrast

to CVRP, the single-period LSP-SQ should make additional decisions regarding the production

amount. In this respect, the results of CVRP are not sufficient for LSP-SQ.

Guimarães et al. (2014) reviewed various formulations of LSP-SQ and proposed classification

criteria. There are various formulations, such as GSEC-based formulation with exponentially

many constraints, pattern-based formulations (Guimarães et al., 2013) with exponentially many

variables, and single/multi-commodity flow formulations. They conducted extensive computational

experiments to compare their computational performance and reported that, on average, the single-

commodity flow formulation showed the best performance. However, the theoretical strengths of

the formulations and their relationships were not investigated.

Recently, Lee & Lee (2021) proposed a time-flow formulation for the general lot-sizing and

scheduling problem model (Fleischmann & Meyr, 1997) which is a hybrid of the big bucket and

small bucket models. As the authors mentioned, their time-flow formulation can be extended to

the big bucket models. Accordingly, we propose new time-flow formulations for the big bucket

models and compare both the theoretical strength and computational performance.

1.3. Mathematical Formulation of LSP-SQ

We provide a generic mathematical formulation of big bucket models LSP-SQ with sets of items

I = {1, ..., I} and periods T = {1, . . . , T}. Throughout the exposition, i, j ∈ I, t ∈ T are used as

indices. We additionally define a fictitious item 0 to represent the start and end of the production

sequence, and let I0 = I ∪ {0}.
Let hcit, bcit, pcit, and dit denote the unit inventory holding cost, backlogging cost, production

cost, and demand for item i and period t, respectively. The setup cost and time between items i

and j in period t are denoted by scijt and stijt, respectively. For notational convenience, we also

define sti0t and st0it and let their values be zero. The production capacity of period t, given in

time units, is denoted by Kt, whereas the unit production time of item i is denoted by ai.

Let sit and bit be the decision variables representing the inventory and backlog amounts of item

i at the beginning of period t, respectively. The initial inventory and backlog amounts of item i

are denoted by si0 and bi0, respectively, and are assumed to be zero. Variable xit represents the

production amount of item i in period t. The binary variable yit is equal to one if item i is produced
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Table 1: Nomenclature

Sets

I Set of items which are indexed by i and j; I = {1, . . . , I}
I0 Set of items including the fictitious item 0; I0 = I ∪ {0}
T Set of time periods which are indexed by t; T = {1, . . . , T}
Parameters

hcit Inventory holding cost of item i in period t

bcit Backlogging cost of item i in period t

pcit Production cost of item i in period t

dit Demand of item i in period t

scijt Cost incurred when setup occurs from item i to j in period t

stijt Time needed for setup from item i to j

Kt Production capacity of period t given in time unit

ai Production time per unit of item i

Variables

sit Inventory amount of item i at the end of period t, si0 = 0

bit Backlog amount of item i at the end of period t, bi0 = 0

xit Production amount of item i in period t

yit = 1 if item i is produced in period t

zijt = 1 if setup from item i to j occurs in period t

z0it (zi0t) = 1 if item i is the first (last) produced item in period t

in period t. The binary variable zijt is equal to one if the setup from item i to item j occurs in period

t. Moreover, let z0it and zi0t be the binary variables which represent whether item i is the first and

last item produced in period t, respectively. The notations used are summarized in Table 1. We

use boldface to denote matrices; for example, x = (xit)i∈I,t∈T is a matrix of variables representing

the production amount of each item at every period. The generic mathematical formulation of the

big bucket models of LSP-SQ (Guimarães et al., 2014) can be written as follows:

minimize
∑
i∈I

∑
t∈T

(
hcitsit + bcitbit + pcitxit

)
+

∑
(i,j)∈A

∑
t∈T

scijtzijt (1a)

subject to sit−1 − bit−1 + xit = dit + sit − bit ∀i ∈ I, t ∈ T (1b)∑
i∈I

aixit +
∑

(i,j)∈A
stijtzijt ≤ Kt ∀t ∈ T (1c)

xit ≤ Ktyit ∀i ∈ I, t ∈ T (1d)

zi0t = z0it+1 ∀i ∈ I, t ∈ T \ {T} (1e)∑
j∈I0\{i}

zjit =
∑

j∈I0\{i}
zijt = yit ∀i ∈ I, t ∈ T (1f)

Do not include cycles without item 0 ∀t ∈ T (1g)
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Figure 1: Production sequence and its representation as a big bucket model with a cycle for each period

xit, sit ≥ 0, yit ∈ {0, 1} ∀i ∈ I, ∀t ∈ T (1h)

zijt ∈ {0, 1} ∀(i, j) ∈ A, ∀t ∈ T (1i)

Objective function (1a) is the sum of the inventory holding, backlogging, production, and setup

costs, the total of which must be minimized. Constraints (1b) are balance equations between the

demand, inventory, backlog, and production amounts. Constraints (1c) ensure that the sum of the

production and setup times does not exceed the available capacity in each period. Constraints (1d)

indicate that an item can only be produced if the corresponding setup occurs. Constraints (1e)

indicate that the setup for the last item in the previous period is carried over to the next pe-

riod. Constraints (1f) logically link the binary variables to ensure a balanced flow of setups.

Constraints (1h)–(1i) ensure the domain of variables.

In a big bucket model, the production sequence within each period is represented as a cycle

including item 0. For instance, let us consider the production plan for two periods t and t + 1

as shown in Figure 1. In period t, items 1, 2, and 4 are produced, whereas items 3 and 5 are

not produced. Items within this period are produced in a sequence of 1 – 2 – 4 which can be

represented as a cycle shown in the left-hand side of Figure 1. Similarly, the production sequence

of 4 – 3 – 2 – 5 within period t + 1 also can be represented as a cycle. As shown in the figure,

each item corresponds to a node, whereas the setup between the two items corresponds to an arc.

Throughout this paper, the terms item and node are used interchangeably, and setup and arc are

also used as such.

Additionally, we define a directed graph G = (I0,A0), where the arc set is defined as A0 :=

{(i, j) : i ∈ I0, j ∈ I0, i �= j}. We also define A := {(i, j) : i ∈ I, j ∈ I, i �= j}. For sets of nodes

S, T ⊆ I0, we denote E(S : T ) as the set of arcs (i, j), such that i ∈ S and j ∈ T . Using the
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definition of E(S : T ), we also can define E(S) := E(S : S), the set of arcs with both endpoints

in S, δ+(S) := E(S : I0 \ S), set of outgoing arcs from S, δ−(S) := E(I0 \ S : S), set of incoming

arcs to S, and δ(S) := δ+(S) ∪ δ−(S), set of arcs with one endpoint in S and another in I0 \ S.
As mentioned previously, a production sequence within each period is represented as a cycle

on G, including item 0. To ensure the validity of the cycle, the constraints (1g) which prevent

cycles without item 0 are necessary. One possible option for the constraints (1g) is the generalized

subtour elimination constraints (GSECs, Toth & Vigo, 2002) which are written as follows:

∑
(j,i)∈δ−(S)

zjit ≥ ykt ∀S ⊆ I, k ∈ S, t ∈ T (2)

GSECs ensure that an item k contained in S can be produced only if at least one incoming arc from

the outside of S is selected. Note that there are several other alternatives, such as the Miller–

Tucker–Zemlin formulation (Miller et al., 1960) or the single-commodity flow formulation (Gavish

& Graves, 1978) which can also eliminate invalid cycles using additionally defined decision variables.

These formulations, with additional variables other than those used in the LSP-SQ model (1), are

denoted as extended formulations.

The remainder of this paper is organized as follows. In Section 2, a single-period substructure

of LSP-SQ is formally presented, and the basic polyhedral properties are provided. In Section 3,

we provide new families of valid inequalities and discuss their properties. In Section 4, we propose

new extended formulations and compare them with the existing formulations. In Section 5, we

present the results of the computational experiments. In Section 6, we provide concluding remarks

and discuss possible future extensions of this study.

2. Single-period Substructure

The single-period substructure of LSP-SQ and its properties are provided in this section. As

its name indicates, this substructure is derived by relaxing the constraints of the LSP-SQ formu-

lation (1) which impose relations between different periods. By relaxing these constraints, the

problem can be decomposed into several single-period substructures defined for t ∈ T . A similar

form of relaxation was introduced by Miller et al. (2003a) for LSP with sequence-independent se-

tups. Following Miller et al. (2003a), we introduce the variables s−i and s+i which represent the

shortage and surplus for the demand of item i, respectively, to ensure the feasibility of the problem.

Because we consider only a single period, we omit period index t.

minimize
∑
i∈I

(
hcis

+
i + bcis

−
it + pcixi

)
+

∑
(i,j)∈A

scijzij (3a)

subject to s−i + xi = di + s+i ∀i ∈ I (3b)
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∑
i∈I

aixi +
∑

(i,j)∈A
stijzij ≤ K (3c)

xi ≤ uiyi ∀i ∈ I (3d)∑
i∈I

z0i = 1 (3e)

∑
j∈I0\{i}

zji =
∑

j∈I0\{i}
zij = yi ∀i ∈ I (3f)

∑
(i,j)∈δ+(S)

zij ≥ yk ∀k ∈ S, S ⊆ I (3g)

xi, s
−
i , s

+
i ≥ 0, yi ∈ {0, 1} ∀i ∈ I (3h)

zij ∈ {0, 1} ∀(i, j) ∈ A0 (3i)

Let X = {(x, s+, s−,y, z) ∈ R
3I
+ ×B

I2+2I : satisfies constraints (3b)−(3i)} be the solution set of

problem (3) where R+ and B represent the nonnegative real number and {0, 1} region, respectively.

Note that the demand constraints (3b) can always be satisfied owing to the variables s−i and s+i ,

and the solution set is not empty. In addition, to enrich the analysis, we introduce the parameter

ui, the upper bound on the production amount of item i ∈ I. The individual upper bounds can be

dropped by letting ui = K, ∀i ∈ I. We denote X0 as the solution set of problem (3) with ui = K,

∀i ∈ I. We use GSECs (3g) to prevent invalid cycles.

Before presenting the basic polyhedral properties, we make some assumptions. Firstly, it can be

shown that the problem (3) and the corresponding solution set X defined with general ai value can

be transformed into equivalent problem and solution set with ai = 1, respectively, without loss of

generality. This can be demonstrated by considering variables x′i = aixi, s
−
i
′
= ais

−
i , s

+
i
′
= ais

+
i ,

and the modified coefficients d′i = aidi and u′i = aiui. By replacing the original variables and

coefficients (xi, s
−
i , . . .) with the newly defined variables and coefficient (x′i, s

−
i
′
, . . .) , it can be

shown that we can let ai = 1 for all i ∈ I without loss of generality. Therefore, we set ai = 1 for

all i ∈ I. We also assume that 0 < stij ≤ K, ∀(i, j) ∈ A and ui ≤ K, ∀i ∈ I.

2.1. Basic polyhedral properties

Before presenting our main results, we firstly analyze the basic properties of the convex hull of

X , that is, conv(X ). The technical proofs of the following propositions are given in Appendix A.

Proposition 2.1. Dimension of conv(X ) is I2 + 2I − 1.

Proposition 2.2. Constraint (3c) is a facet-defining inequality of conv(X ) if ui = K for all i ∈ I,
that is, it defines a facet of conv(X0).

Proposition 2.3. For a given i ∈ I, if ui ≤ K−max{stij , stji} for all j ∈ I \{i}, constraint (3d)
defines a facet of conv(X ).
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When the condition given in Proposition 2.3 does not hold, the constraint (3d) does not define

the facets of conv(X ). Intuitively, if ui is greater than the given value, for instance ui = K, it

may be not possible for the production amount of item i being equal to ui. In those cases, it

is impossible for the constraint (3d) to define a facet of X0. Instead, the constraint (3d) can be

tightened to be the facet-defining inequality of conv(X0), as shown in Proposition 2.4.

Proposition 2.4. For a given i ∈ I, the following tightened upper bound constraint (4) is a

facet-defining inequality of conv(X ) when ui = K, that is, it defines a facet of conv(X0).

xi ≤ Kyi −
∑

j∈I\{i}
(stijzij + stjizji) ∀i ∈ I (4)

3. New Valid Inequalities

3.1. S-STAR inequality

In this section, we propose new families of valid inequalities for X and identify their facet-

defining conditions. For a subset of items S ⊆ I, the first inequality is defined as follows.

∑
i∈S

xi +
∑

(i,j)∈δ(S)
stijzij +

∑
(i,j)∈E(S)

stijzij ≤ K
∑

(i,j)∈δ−(S)

zij ∀S ⊆ I (5)

The inequality (5) is called the S-STAR inequality because the left-hand side terms form the shape

of a star centered on S, as illustrated in Figure 2. The dark nodes represent the items included

in S. The arcs included in E(S) are represented with the dotted arcs, whereas those in δ(S) are

represented with the solid arcs. Note that the arcs are presented in bidirectional ways to present

both setups between any two items. The inequality indicates that the sum of production amounts of

items in S and time for setups related to items in S cannot be greater than K
∑

(i,j)∈δ−(S) zij . This

inequality can also eliminate all cycles without item 0 which indicates that the S-STAR inequality

can replace GSEC (3g). This is demonstrated in the following proposition.

Proposition 3.1. For a given S ⊆ I, the inequality (5) is valid for X . In addition, these inequal-

ities are sufficient to eliminate all cycles which do not include item 0.

Proof. For a given feasible solution of X , if
∑

(i,j)∈δ−(S) zij ≥ 1, the inequality trivially holds

as the right-hand side becomes greater than or equal to the capacity K. On the other hand, if∑
(i,j)∈δ−(S) zij = 0, there are no incoming arcs to the nodes in S which indicates that the items in

S cannot be produced, and the corresponding setups that start or end with the items in S cannot

be conducted. Therefore, the left-hand side value also becomes zero and the inequality holds.

To demonstrate that the S-STAR inequality can prevent any invalid cycles, suppose that we are

given a cycle that does not include item 0, and letN be the set of nodes in the cycle (|N | ≥ 2). Then,

from the definition, there are no incoming and outgoing arcs for N . Therefore,
∑

(i,j)∈δ−(N) zij = 0,
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and the right-hand side of inequality (5) defined by N becomes zero. On the other hand, as∑
(i,j)∈E(N) zij = |N | and stij > 0, ∀(i, j) ∈ A, the left-hand side is greater than 0, violating

inequality (5). This shows that invalid cycles can be eliminated by adding the S-STAR inequalities.

We note that the S-STAR inequality is closely related to the generalized large multistar (GLM) in-

equality proposed for CVRP by Gouveia (1995) and Letchford et al. (2002), which can be presented

as follows:

∑
i∈S

diyi +
∑

(i,j)∈δ+(S)

djzij +
∑

(i,j)∈δ−(S)

dizij ≤ K
∑

(i,j)∈δ−(S)

zij ∀S ⊆ I (GLM)

To demonstrate the relation between two inequalities more explicitly, consider the following generic

inequality which subsumes both S-STAR and GLM inequalities, although it has nonlinear terms xizij .

∑
i∈S

xi +
∑

(i,j)∈δ+(S)

(stij + xj)zij+

∑
(i,j)∈δ−(S)

(xi + stij)zij +
∑

(i,j)∈E(S)

stijzij ≤ K
∑

(i,j)∈δ−(S)

zij ∀S ⊆ I (6)

In CVRP, the value of xi which indicates the delivery amount for customer i, cannot have any

value between 0 and ui, but must be either 0 or di, that is, xi = diyi. In addition, no setup time

is considered in CVRP. In this regard, by setting stij = 0 and xi = diyi for inequality (6), we

can obtain the GLM inequality immediately because xizij = diyizij = dizij (note that yizij can be

SC

S

S SC E(S) δ(S)

Figure 2: Illustration of the S-STAR inequality
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linearized as zij). On the other hand, by dropping variables xj and xi in the second and third

terms of inequality (6), respectively, we can obtain the S-STAR inequality.

In contrast to the GLM inequalities, the facet-defining conditions of the S-STAR inequalities can

be identified. Specifically, if the individual upper bound for each item is not imposed, the S-STAR

inequality becomes a facet-defining inequality of conv(X ).

Proposition 3.2. Given S ⊆ I, the S-STAR inequality defines a facet of conv(X ) when ui = K,

for all i ∈ I. In other words, it defines a facet of conv(X0).

Proof. See Appendix A.

3.1.1. Separation of S-STAR inequality

Because the S-STAR inequality is defined for each node subset S ⊆ I, there are exponentially

many inequalities. Therefore, it is not practical to add them all to the formulation initially. Rather,

they are used as cutting planes, that is, they are dynamically added by solving a separation problem

that identifies violated inequalities given a fractional solution. The separation problem of the

S-STAR inequality, given a fractional solution (x̄, s̄+, s̄−, ȳ, z̄), is to find a subset N ⊆ I such that

∑
i∈N

x̄i +
∑

(j,i)∈E(N)

stjiz̄ji +
∑

(i,j)∈δ(N)

stij z̄ij > K
∑

(i,j)∈δ+(N)

z̄ij ,

or equivalently,
∑
i∈N

(
x̄i +

∑
j∈I0\{i}

stjiz̄ji

)
+

∑
i∈N

∑
j /∈N

(
stij −K

)
z̄ij > 0.

To formulate this problem as an integer program, we define the following variables. For i ∈ I,
let us define the binary variable pi which is equal to one if the item i is chosen to be a member of N .

We let p0 = 0. For (i, j) ∈ A0, let us define the binary variable qij which is equal to one if the arc

(i, j) belongs to δ+(N), that is, i ∈ N and j /∈ N . We also define additional notation to simplify

the formulation. For i ∈ I, let αi = x̄i +
∑

j∈I0\{i} stij z̄ij . For (i, j) ∈ A0, let γij =
(
K − stij

)
z̄ij .

Note that the parameters αi and γij are non-negative. Then, the separation problem of the S-STAR

inequalities can be formulated as follows.

(SEP-S-STAR) maximize
∑
i∈I

αipi −
∑

(i,j)∈A0

γijqij (7a)

subject to qij ≤ pi ∀(i, j) ∈ A0 (7b)

qij ≤ 1− pj ∀(i, j) ∈ A0 (7c)

pi − pj ≤ qij ∀(i, j) ∈ A0 (7d)

pi ∈ {0, 1} ∀i ∈ I (7e)

qij ∈ {0, 1} ∀(i, j) ∈ A0 (7f)
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After solving the above separation problem, one can obtain a set of items N whose pi value

is one. If the optimal objective value is greater than zero, the S-STAR inequality defined by N is

violated and should be added to the problem. On the other hand, the non-positive objective value

indicates that there are no violated inequalities. Because this problem should be solved repeatedly

during the cutting plane algorithm, it is important to identify its computational complexity and

check whether it can be solved efficiently. We can show that the above separation problem can be

solved in a polynomial time which is demonstrated in the following proposition.

Proposition 3.3. (SEP-S-STAR) is polynomially solvable.

Proof. The objective coefficients of the variables qij are non-positive. Therefore, there exists an

optimal solution with qij value as small as possible. In this regard, the value of qij is determined

by constraint (7d), that is, qij = pi − pj . Because pi − pj ≤ pi and pi − pj ≤ 1 − pj always

hold, constraints (7b) and (7c) are automatically satisfied and can be dropped. Then, a matrix

corresponding to the remaining constraints (7d) is of the form [In|Q], where In is an identity matrix

with n = I +1 rows and columns, and each row of matrix Q contains only two nonzero coefficients

of 1 and −1 which indicates that it is totally unimodular (Nemhauser & Wolsey, 1988). Therefore,

the problem can be solved by solving its LP relaxation which can be performed in polynomial

time.

3.2. U-STAR inequality

The S-STAR inequality presented above defines a facet if there is no individual upper bound for

the production amount of each item. On the other hand, the following valid inequality, denoted as

U-STAR inequality, can be beneficial when the non-trivial upper bound for each item is presented.

Proposition 3.4. For a given S ⊆ I, the inequality

∑
i∈S

xi −
∑

(i,j)∈E(S)

λijzij ≤
∑

(i,j)∈δ−(S)

ujzij (8)

is valid for X , where λij := min{K − stij − ui, uj} for all (i, j) ∈ A.

Proof. See Appendix A.

Proposition 3.5. For a given S ⊆ I, the U-STAR inequality (8) defines a facet of conv(X ) if the

following conditions hold.

1. For all i ∈ S and j ∈ I \ S, ui +max{stij , stji} ≤ K.

2. For all (i, j) ∈ E(S), K − stij < ui + uj.

Proof. See Appendix A.
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Note that when ui = K, the first condition is violated. In this case, the U-STAR inequalities are

reduced to the weakened version of the S-STAR inequalities and therefore, are dominated by them.

3.2.1. Separation of U-STAR inequality

Similar to the S-STAR inequality, there are exponentially many number of U-STAR inequalities.

The separation problem of the U-STAR inequality for a given fractional solution (x̄, s̄+, s̄−, ȳ, z̄), is

to find a subset N ⊆ I such that

∑
i∈N

x̄i −
∑

(i,j)∈E(N)

min{K − stij − ui, uj}z̄ij >
∑

(i,j)∈δ−(N)

uj z̄ij .

Because one can rewrite min{K−stij−ui, uj} = uj−[uj+ui+stij−K]+, where [X]+ = max{0, X},
the problem is reduced to finding N such that

∑
i∈N

(uiȳi − x̄i)−
∑

(i,j)∈E(N)

[uj + ui + stij −K]+z̄ij < 0.

To formulate the above separation problem as an integer program, we define additional vari-

ables. For i ∈ I, let us define the binary variable pi which is equal to one if i ∈ N . For (i, j) ∈ A, let

us define the binary variable qij which is equal to one if (i, j) ∈ E(N), that is, i ∈ N and j ∈ N . In

addition, we let γi = uiȳi− x̄i for i ∈ I. For (i, j) ∈ A, we define δij = [uj+ui+stij−K]+z̄ij . Note

that both γi and δij are non-negative. Using the notation, the separation problem (SEP-U-STAR)

can be formulated. Furthermore, we can show that this problem is also polynomially solvable.

(SEP-U-STAR) minimize
∑
i∈I

γipi −
∑

(i,j)∈A
δijqij (9a)

subject to qij ≤ pi ∀(i, j) ∈ A (9b)

qij ≤ pj ∀(i, j) ∈ A (9c)

pi + pj − 1 ≤ qij ∀(i, j) ∈ A (9d)

pi ∈ {0, 1} ∀i ∈ I (9e)

qij ∈ {0, 1} ∀(i, j) ∈ A (9f)

Proposition 3.6. (SEP-U-STAR) is polynomially solvable.

Proof. The objective coefficients of the variables qij are non-positive. Because (SEP-U-STAR) is a

minimization problem, in contrast to (SEP-S-STAR), there exists an optimal solution with a qij

value as large as possible. Therefore, the lower bounding constraints (9d) are redundant and can be

dropped. Then, each row of the matrix corresponding to the remaining constraints (9b) and (9c)

contains only two nonzero coefficients of 1 and −1 which indicates that it is totally unimodular
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(Nemhauser & Wolsey, 1988). Therefore, the problem can be solved by solving its LP relaxation

within a polynomial time.

It is well-known that GSEC can be separated in polynomial time by solving maximum-flow

problems (Wolsey, 2020). The separation problems (SEP-S-STAR) and (SEP-U-STAR) can also be

converted to maximum-flow problems, similar to that of GSEC. Therefore, in our implementation

of the separation algorithms, we used the maximum flow algorithms rather than solving LP for all

three inequalities for computational efficiency.

We denote the formulations obtained by replacing the constraints (3g) in formulation (3) with

the S-STAR inequality (5), and U-STAR inequality (8) as (S-STAR) and (U-STAR), respectively. In

Section 4, we introduce extended formulations which can also be used to model the production

sequence and ensure the validity of the cycle.

4. Extended Formulations

4.1. Single-commodity flow formulations

The single-commodity flow formulation, first proposed by Gavish & Graves (1978) for TSP, has

been frequently used to model many routing problems. Guimarães et al. (2014) used this formu-

lation to model LSP-SQ. To present this formulation, the variable fij for (i, j) ∈ A0 representing

the commodity flow along the arc (i, j) should be defined.

∑
i∈I

f0i =
∑
i∈I

yi (10a)

∑
j∈I0\{i}

fji −
∑

j∈I0\{i}
fij = yi ∀i ∈ I (10b)

0 ≤ fij ≤ Izij ∀(i, j) ∈ A0 (10c)

Constraints (10a) indicate that the amount of commodities sent from node 0 is equal to the total

number of items produced. Constraints (10b) ensure that if item i is produced, the amount of

commodity decreases by one, whereas it does not change if i is not produced. Constraints (10c)

represent the relation between the variables f and z, and impose the upper bound on the amount

of the commodity. If zij = 1, fij represents the amount of commodity that flows along the arc

(i, j), whereas fij = 0 if zij = 0. To illustrate this, we recall the production plan of the period

t presented in Figure 1 where the items are produced in an order of 1 – 2 – 4. This sequence

can be represented with commodity flow variables as shown in Figure 3. Because three items are

produced, three units of commodity are sent from node 0 to 1, that is, f01 = 3. Then, the amount

decreases by one at every node.

By replacing constraints (3g) with (10), the first single-commodity flow formulation which is

denoted as (SCF1) can be obtained. The solution set of (SCF1) is defined by the set of constraints
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Figure 3: Illustration of the single-commodity flow formulations

{(3b) − (3f), (3h), (3i), (10)}. It is commonly known (Gouveia, 1995) that a stronger formulation

denoted as (SCF2) can be obtained by replacing the bound constraints (10c) of (SCF1) with the

tighter constraints (11), that is, the solution set of (SCF2) is defined by the constraints {(3b) −
(3f), (3h), (3i), (10a)− (10b), (11)}.

z0i ≤ f0i ≤ Iz0i ∀i ∈ I (11a)

zij ≤ fij ≤ (I − 1)zij ∀(i, j) ∈ A (11b)

fi0 = 0 ∀i ∈ I (11c)

Both (SCF1) and (SCF2) prevent any cycles without node 0. Furthermore, the following relations

hold among (SCF1), (SCF2), and (GSEC).

Proposition 4.1. Let z(F) be the LP relaxation bound obtained from the given formulation (F).

Then,

z(SCF1) ≤ z(SCF2) ≤ z(GSEC).

Proof. By projecting both (SCF1) and (SCF2) onto the original space, one can obtain the following

inequalities (12) and (13), respectively.

∑
i∈S

yi ≤ I
( ∑

(i,j)∈δ−(S)

zij

)
∀S ⊆ I (12)

∑
i∈S

yi ≤ I
( ∑

(i,j)∈δ−(S)

zij

)
−

∑
i∈S

∑
j∈I\S

zij −
∑
i∈I\S

∑
j∈S

zij ∀S ⊆ I (13)

No other inequalities can be obtained by the projection because of Hoffman’s circulation theorem

(Hoffman, 1976). It is trivial that inequalities (12) are dominated by inequalities (13). We show
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that inequalities (13) are implied by the GSEC. For a given S ⊆ I, by aggregating the GSEC for all

i ∈ S, we obtain
∑

i∈S yi ≤ |S|∑(i,j)∈δ−(S) zij . Therefore, it is sufficient to show that

∑
i∈S

∑
j∈I\S

zij +
∑
i∈I\S

∑
j∈S

zij ≤ (I − |S|)
∑

(i,j)∈δ−(S)

zij . (14)

When |S| = I, it naturally holds because I \ S = ∅. When |S| = I − 1, |I \ S| = 1, and let k

be the only element in I \ S. Then,
∑
i∈S

∑
j∈I\S

zij +
∑
i∈I\S

∑
j∈S

zij =
∑
i∈S

(zik + zki)

and

(I − |S|)
∑

(i,j)∈δ−(S)

zij =
∑
i∈S

∑
j∈I0\S

zij =
∑
i∈S

(zik + zi0) =
∑
i∈S

zik + 1− zk0

as
∑

i∈I zi0 = 1. Because
∑

i∈S zki + zk0 ≤ 1, inequality (14) also holds. Finally, when |S| ≤ I − 2,

inequality (14) can be written as

∑
i∈S

∑
j∈I\S

zij +
∑
i∈I\S

∑
j∈S

zij ≤
∑

(i,j)∈δ+(S)∪δ−(S)

zij = 2
∑

(i,j)∈δ−(S)

zij ≤ (I − |S|)
∑

(i,j)∈δ−(S)

zij ,

and therefore, it also holds.

4.2. Multi-commodity flow formulations

Multi-commodity flow formulations have also been studied for various routing problems. Sarin

et al. (2011) presented a multi-commodity flow formulation for LSP-SQ. In contrast to single-

commodity flow formulations, multi-commodity flow formulations define one commodity per item.

Let us define the binary variable qkij for i ∈ I0 and j, k ∈ I which represents whether arc (i, j) is

traversed on the way from node 0 to node k. In other words, qkij = 1 if the node k is visited after

traversing the arc (i, j). Accordingly, the following constraints are formed.

∑
j∈I

qk0j = yk ∀k ∈ I (15a)

∑
j∈I0\{k}

qkjk = yk ∀k ∈ I (15b)

∑
j∈I0\{i}

qkji =
∑

j∈I\{i}
qkij ∀i, k ∈ I, k �= i (15c)

qkkj = 0 ∀j, k ∈ I (15d)

0 ≤ qkij ≤ zij ∀i ∈ I0, j, k ∈ I (15e)
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Constraints (15a) and (15b) ensure that when item k is produced, the corresponding commodity

should flow from node 0 to node k. Constraints (15c) are the flow balance constraints. Con-

straints (15d) and (15e) ensure that the commodity variable can have a nonzero value only when

the corresponding arc is traversed. As an illustration, the production sequence in Figure 1 is rep-

resented with multi-commodity flow variables in Figure 4. Note that qij = (q1ij , q
2
ij , . . . , q

I
ij). For

example, because items 1, 2, and 4 are produced after traversing the arc (0, 1), q101 = q201 = q401 = 1

which is concisely represented as q01 = (1, 1, 0, 1, 0). After traversing the arc (1, 2), nodes 2 and 4

are visited which results in q12 = (0, 1, 0, 1, 0), and so on.

By replacing constraints (3g) with the set of constraints (15), the multi-commodity flow formu-

lation denoted as (MCF1) can be obtained, that is, the solution set of (MCF1) is defined by the set

of constraints {(3b)− (3f), (3h), (3i), (15)}. It is known that by projecting (MCF1) onto the original

space, (GSEC) is obtained, and they provide the same LP bounds (Padberg & Sung, 1991).

Because (MCF1) only uses additional variables qkij regarding the sequencing decisions, there are

no considerations for lot-sizing decisions. In this regard, to further enhance the LP relaxation

bound, we derive the following additional constraints that incorporate both decisions.

∑
(i,j)∈A

stijq
k
ij + xk ≤ Kyk ∀k ∈ I (16a)

stijq
j
ij + stjiq

i
ji + xi + xj ≤ K(yi + yj − zij − zji) ∀(i, j) ∈ A (16b)

It is not difficult to show that inequalities (16a) and (16b) are valid. Incorporating these inequalities

to (MCF1), a tighter formulation (MCF2) is obtained, that is, the solution set of (MCF2) is defined

by the set of constraints {(3b) − (3f), (3h), (3i), (15), (16)}. Their strength and effectiveness are

further investigated through computational experiments. Additionally, we obtain the following
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q01 = (1, 1, 0, 1, 0)

q12 = (0, 1, 0, 1, 0)

q24 = (0, 0, 0, 1, 0)

q40 = (0, 0, 0, 0, 0)

Figure 4: Illustration of the multi-commodity flow formulations
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corollary.

Corollary 4.2. z(SCF1) ≤ z(SCF2) ≤ z(GSEC) = z(MCF1) ≤ z(MCF2).

4.3. Time-flow formulations

The time-flow formulations are similar to the single-commodity flow formulations, except that

they represent the flow of time instead of commodity. To present the formulations, we define a set

of time-flow variables wij for (i, j) ∈ A0 which represents the remaining capacity when the setup

from item i to item j begins.

∑
j∈I0\{i}

(wji − stjizji)− xi =
∑

j∈I0\{i}
wij ∀i ∈ I (17a)

0 ≤ wij ≤ Kzij ∀(i, j) ∈ A0 (17b)

Constraints (17a) are time-flow balance equations which indicate that, by subtracting the setup

and production time for item i from the given capacity, one can obtain the remaining capacity.

Constraints (17b) impose upper bounds on the time-flow variables.

This is illustrated in Figure 5 where the values of time-flow variables wij representing the re-

maining capacity decrease as the flow travels along the arcs. In addition, contrary to the commodity

variables which only contain the sequencing information, the time-flow variables can additionally

incorporate the production amounts. For instance, let us assume that the capacity and setup times

be given as K = 100 and stij = 15 for all (i, j) ∈ A. In addition, let the production amounts are

given as x1 = x2 = 25 and x4 = 20. The flow starts with the full capacity, that is, w01 = 100. By

producing 25 units of item 1, the remaining capacity is w12 = 75. Then, after conducting the setup

from item 1 to 2 and the production of x2 = 25, the remaining capacity is 75− 15− 25 = 35. This

property can be beneficial in modeling LSP-SQ where both the lot-sizing and sequencing decisions

should be considered.

By replacing constraints (3g) with the set of constraints (17), the first time-flow formulation

(TF1) can be obtained. The solution set of (TF1) is defined by the set of constraints {(3b) −
(3f), (3h), (3i), (17)}. (TF1) can be further strengthened with tighter bound constraints (18) instead

of (17b) which we call (TF2).

stijzij ≤ wij ≤ Kzij ∀(i, j) ∈ A0, i �= 0 (18a)

w0i = Kz0i ∀i ∈ I (18b)

Finally, we provide the relation between the time-flow formulations and S-STAR inequalities.

Proposition 4.3. Projection of (TF2) onto the original space results in S− STAR inequalities (5).

Furthermore, z(TF1) ≤ z(TF2) = z(S− STAR).
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Proof. For a given S ⊆ I, by adding the inequalities (17a) for all i ∈ S and rearranging the terms,

one can obtain

∑
(j,i)∈E(S)∪δ−(S)

stjizji +
∑
i∈S

xi =
∑
i∈S

( ∑
j∈I0\{i}

wji −
∑

j∈I0\{i}
wij

)
=

∑
(j,i)∈δ−(S)

wji −
∑

(i,j)∈δ+(S)

wij .

From the bound constraints (18),

∑
(j,i)∈E(S)∪δ−(S)

stjizji +
∑
i∈S

xi =
∑

(j,i)∈δ−(S)

wji −
∑

(i,j)∈δ+(S)

wij ≤ K
∑

(i,j)∈δ−(S)

zij −
∑

(i,j)∈δ+(S)

stijzij

can be obtained, which is the S-STAR inequality for S ⊆ I. This indicates that all feasible solutions
of (TF2) satisfy the S-STAR inequalities. Moreover, due to Hoffman’s circulation theorem (Hoffman,

1976) it can be shown that z(TF2) = z(S-STAR).

There are no other dominance relations between the time-flow formulations and commodity-

flow formulations. Their strengths are compared through computational experiments, as discussed

in the next section.

5. Computational Experiments

5.1. Experiment settings

We stress that the aim of the computational experiments is to compare the strengths of various

inequalities and formulations, rather than to solve real-world LSP-SQ instances. Thus, we compare

the LP relaxation bounds of the extended formulations, that is, (SCF1), (SCF2), (MCF1), (MCF2),
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Figure 5: Illustration of the time-flow formulations
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(TF1), and (TF2), and the formulations with valid inequalities, that is, (GSEC), (S-STAR), and

(U-STAR).

To compute the bound value with a particular type of inequality, we exhaustively separate the

violated inequalities at the root node until none is found or the objective value does not improve

during the last 100 iterations. Furthermore, for the purpose of comparison, we also report the

results when all three types of inequalities are separated which is denoted as (ALL).

All experiments were conducted on an Intel Core 3.10 GHz PC with 16 GB RAM under Win-

dows 10 Pro. The separation algorithms and mathematical formulations were implemented using

C++. FICO Xpress 8.12 with its default parameter settings was used as the LP solver.

We use two sets of test instances, that is, single-period and multi-period instances that are

generated following the instance-generation scheme proposed by Almada-Lobo et al. (2007) which

has been frequently used in the literature. The descriptions of the instances are given below.

5.1.1. Single-period instances

The type of single-period instance is defined by the combination of the number of items (I),

capacity utilization parameter (ρ), setup cost parameter (θ), and upper bound parameter (β).

These parameters are adopted from the study of Almada-Lobo et al. (2007), except for the last

parameter which is additionally defined to determine whether there is an individual upper bound

for the production amount of each item (β = 1) or not (β = 0).

The demand for item i, di, is generated from a discrete uniform distribution U [40, 60], and

capacity K is set to I · davg/ρ where davg is the average demand. The unit surplus and shortage

costs of item i, that is, hci and bci, respectively, are generated from U [2, 10]. In addition, we use a

negative unit production cost, i.e., profit pci = −1, to make production profitable. The setup time

stij is drawn from U [0.05K, 0.1K], and the setup cost is set as scij = θ · stij . The upper bound ui

for item i is generated from U [di+1,K] if β = 1, while it is set to K if β = 0. We use the following

parameters: I ∈ {5, 15, 25, 35}, ρ = {0.6, 0.8, 1}, θ ∈ {50, 100}, β ∈ {0, 1}. For each combination,

we generated 100 instances, resulting in a total of 4800 single-period instances.

5.1.2. Multi-period instances

Multi-period instances are also generated, similar to the single-period instances. The main

difference is in setting the cost parameters which are set as pcit = 1, hcit ∼ U [2, 10], bcit ∼ U [10, 50],

and scij = θ·stij . We use the following parameters: I ∈ {5, 15, 25}, T ∈ {5, 15, 25}, ρ = {0.6, 0.8, 1},
θ ∈ {50, 100}, β ∈ {0, 1}. For each combination, we generated 10 instances, resulting in a total of

1080 multi-period instances.

5.2. Experiment results on single-period instances

We compared the strengths of the extended formulations and valid inequalities using the fol-

lowing measures:
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Table 2: Test results on single-period instances: LP gap (%)

Factors
Extended Formulations Valid Inequalities

(SCF1) (SCF2) (MCF1) (MCF2) ����� ����� (GSEC) �����	
� (U-STAR) (ALL)

I

5 29.72 29.61 29.21 23.14 22.12 22.12 29.21 22.12 23.58 21.60
15 33.66 33.65 33.42 26.52 21.77 21.77 33.42 21.77 23.14 21.04
25 33.87 33.87 33.73 27.46 20.93 20.92 33.73 20.92 22.43 20.23
35 34.68 34.68 34.59 28.65 21.02 21.02 34.59 21.02 22.54 20.31

ρ
60 32.55 32.52 32.31 26.10 21.24 21.23 32.31 21.23 22.70 20.60
80 33.05 33.02 32.82 26.48 21.48 21.47 32.82 21.47 22.95 20.80

100 33.35 33.32 33.09 26.75 21.67 21.67 33.09 21.67 23.12 20.98

θ
50 49.66 49.63 49.42 43.49 36.49 36.48 49.42 36.48 37.99 35.28

100 16.30 16.28 16.05 9.40 6.43 6.43 16.05 6.43 7.86 6.31

β
0 48.49 48.45 48.25 36.94 29.44 29.44 48.25 29.44 33.20 29.44
1 17.48 17.46 17.23 15.95 13.48 13.47 17.23 13.47 12.65 12.15

Average 32.98 32.95 32.74 26.44 21.46 21.46 32.74 21.46 22.92 20.79

• LP gap (%): (OPT)−z(∗)
(OPT)

× 100,

• Closed gap (%): z(∗)−z(PURE)
(OPT)−z(PURE) × 100,

where (OPT) is an optimal objective value, (PURE) is the basic lower bound obtained using for-

mulation (3) without GSEC (3g), and z(∗) is the LP relaxation bound obtained from the given

formulation (∗). Note that, therefore, (PURE) itself is not a valid formulation and is only used for

comparison. The LP gap and Closed gap results for single-period instances are reported in Ta-

ble 2 and 3, respectively. The test results are averaged for different parameter values, for example,

I = 5, I = 15, I = 25, and I = 35. In the heading of each table, we highlight the inequalities and

formulations that show the best performance using boldface.

First, the following relations established in Section 3 and 4 are verified based on the results:

• z(SCF1) ≤ z(SCF2) ≤ z(MCF1) = z(GSEC) ≤ z(MCF2),

• z(TF1) ≤ z(TF2) = z(S-STAR), and

• z(U-STAR) ≤ z(S-STAR) when β = 0.

The newly proposed formulations (TF1) and (TF2) provide considerably tighter LP bounds

than the other extended formulations. They can close approximately 40% of the gap, whereas

only approximately 3% can be closed by (MCF1). The effect of the constraints added in (MCF2) is

considerably significant, whereas the strengthened bounds of (SCF2) and (TF2) are not particularly

significant compared with (SCF1) and (TF1), respectively.

(U-STAR) provides slightly better results than (S-STAR) when β = 1, as expected. Obviously,

the tightest bound is obtained when all three types of inequalities are added in (ALL). From Ta-

ble 2 and 3, it can be shown that the overall performance of (S-STAR) is better than (U-STAR)
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Table 3: Test results on single-period instances: Closed gap (%)

Factors
Extended Formulations Valid Inequalities

(SCF1) (SCF2) (MCF1) (MCF2) (TF1) ����� (GSEC) ������	� (U-STAR) (ALL)

I

5 2.27 2.84 4.97 27.80 30.27 30.30 4.97 30.30 24.52 32.49
15 0.59 0.63 3.19 28.25 40.47 40.50 3.19 40.50 38.49 43.99
25 0.17 0.18 2.05 24.99 43.74 43.77 2.05 43.77 41.61 47.24
35 0.11 0.11 1.55 22.73 45.42 45.45 1.55 45.45 43.51 48.96

ρ
60 0.82 0.95 2.89 26.16 39.79 39.81 2.89 39.81 36.84 42.90
80 0.65 0.80 2.91 25.29 39.56 39.59 2.91 39.59 36.67 42.86

100 0.89 1.07 3.03 26.39 40.58 40.60 3.03 40.60 37.59 43.74

θ
50 0.24 0.33 1.03 10.94 24.80 24.84 1.03 24.84 24.05 28.94

100 1.33 1.55 4.85 40.95 55.15 55.17 4.85 55.17 50.02 57.39

β
0 0.51 0.67 1.46 31.66 47.03 47.03 1.46 47.03 37.94 47.03
1 1.06 1.21 4.41 20.23 32.92 32.98 4.41 32.98 36.13 39.31

Average 0.78 0.94 2.94 25.94 39.97 40.00 2.94 40.00 37.03 43.17

Table 4: Test results on single-period instances: Ratio of instances with LP gap below certain value

LP Gap
Extended Formulations Valid Inequalities

(SCF1) (SCF2) (MCF1) (MCF2) (TF1) ����� (GSEC) ������	� (U-STAR) (ALL)

= 0% 6.04 6.04 6.35 8.00 8.56 8.58 6.35 8.58 8.27 9.10
< 1% 7.00 7.06 7.56 10.10 12.06 12.06 7.56 12.06 11.96 13.06
< 5% 15.17 15.21 16.06 21.73 26.02 26.02 16.06 26.02 24.38 26.58

< 10% 24.54 24.54 25.04 29.81 38.23 38.25 25.04 38.25 32.73 38.73

and (GSEC). At the same time, however, we found that there exist no dominance relationships be-

tween these inequalities. For some instances, (S-STAR) performed better than the others, whereas

(U-STAR) and (GSEC) performed better for other instances.

Additionally, we report the ratio of instances in which the LP gap is below certain values in

Table 4. For example, it is reported that (SCF1) provides LP bound which is the same as the

optimal value for about 6% of instance. For about 15% of instances, it provides LP gap less than

5%, and so on. Similar to the above results, (TF2) provides the best results among the extended

formulations. Using (TF2), in approximately 8.6% of the instances, one can obtain the same LP

bound as the optimal objective value. Moreover, in approximately 40% of the instances, the LP

gap is smaller than 10%.

In Table 5, we present the sizes of the extended formulations relative to the smallest formula-

tion (SCF1). As expected, the size of the multi-commodity flow formulations is the largest, and

the relative size increases with I. In particular, owing to additional constraints, (MCF2) has the

largest number of variables and constraints. This results in an increase in computation time, as

demonstrated in Table 6.

The number of separated inequalities is reported in Table 7. On average, approximately four
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Table 5: Test results on single-period instances: Relative formulation size

I
Variables Constraints

(SCF1) (SCF2) (MCF1) (SCF1) (SCF2)
(MCF1) (MCF2)

=(TF1) =(TF2) =(MCF2) =(TF1) =(TF2)

5 1.00 1.00 2.67 1.00 1.47 3.81 4.66
15 1.00 1.00 7.43 1.00 1.74 12.88 14.31
25 1.00 1.00 12.36 1.00 1.83 22.58 24.21
35 1.00 1.00 17.33 1.00 1.87 32.43 34.15

Average 1.00 1.00 9.95 1.00 1.73 17.93 19.33

Table 6: Test results on single-period instances: Computation time

I
Computation Time (s)

(SCF1) (SCF2) (TF1) (TF2) (MCF1) (MCF2)

5 0.002 0.002 0.002 0.003 0.003 0.004
15 0.005 0.006 0.007 0.008 0.030 0.144
25 0.012 0.015 0.026 0.032 0.292 1.579
35 0.028 0.035 0.071 0.073 2.297 11.368

Average 0.012 0.014 0.027 0.029 0.656 3.274

Table 7: Test results on single-period instances: Number of added inequalities

Factors
Number of added inequalities

(GSEC) (S-STAR) (U-STAR) (ALL)

I

5 0.8 1.9 0.9 3.0
15 4.0 10.3 3.4 14.8
25 5.7 22.8 6.7 30.9
35 6.2 38.0 10.2 49.0

ρ
60 4.1 18.3 5.0 23.8
80 4.2 18.0 4.9 23.9

100 4.2 18.5 6.0 25.6

θ
50 4.7 29.6 8.2 38.1

100 3.6 6.9 2.3 10.7

β
0 4.7 16.9 2.7 22.5
1 3.6 19.6 7.9 26.4

Average 4.2 18.2 5.3 24.4

times more inequalities are added when using the S-STAR inequality than when using GSEC. When

using all three types, (ALL), the number of added inequalities is smaller than the sum of that when

each type is used individually.
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Table 8: Test results on multi-period instances: LP strength

Factors
Extended Formulations Valid Inequalities

(SCF1) (SCF2) (MCF1) (MCF2) (TF1) (TF2) (GSEC) (S-STAR) �������� (ALL)

I
5 92.98 92.98 93.27 94.12 94.57 94.59 93.27 94.59 96.24 97.00

15 97.31 97.31 97.43 97.69 98.06 98.07 97.43 98.07 98.35 98.63
25 97.36 97.36 97.45 97.57 97.77 97.77 97.45 97.77 97.87 98.03

T
5 97.14 97.14 97.32 97.62 97.82 97.82 97.32 97.82 98.30 98.72

15 96.06 96.06 96.22 96.64 97.01 97.02 96.22 97.02 97.73 98.12
25 94.45 94.45 94.61 95.12 95.58 95.59 94.61 95.59 96.43 96.82

ρ
60 99.58 99.58 99.70 99.72 99.62 99.62 99.70 99.62 99.80 99.93
80 97.95 97.95 98.14 98.19 98.08 98.08 98.14 98.08 98.65 98.91

100 90.11 90.12 90.32 91.47 92.70 92.71 90.32 92.71 94.02 94.83

θ
50 96.21 96.22 96.40 96.77 97.06 97.06 96.40 97.06 97.64 98.04

100 95.55 95.55 95.70 96.15 96.55 96.55 95.70 96.55 97.34 97.74

β
0 98.53 98.53 98.53 99.25 99.94 99.95 98.53 99.95 99.74 99.95
1 93.24 93.24 93.57 93.67 93.66 93.67 93.57 93.67 95.24 95.83

Average 95.88 95.88 96.05 96.46 96.80 96.81 96.05 96.81 97.49 97.89

5.3. Experiment results on multi-period instances

For the results of the multi-period instances, we report the relative strength of the formulations

relative to the bound which can be obtained when we know the ideal formulation of the single-

period substructure, that is, conv(X ). This bound is denoted by z(IDEAL). To calculate z(IDEAL),

we define a pattern-based formulation whose LP relaxation is solved using a column generation

procedure. Because they are outside the scope of this study, we do not provide detailed descriptions

of the pattern-based formulation and column generation procedure (see Appendix B). We denote

the strength of a formulation (F) as z(F)
z(IDEAL)×100 and present the corresponding results in Table 8.

Similar to the results of the single-period instances, the newly proposed formulations and in-

equalities are successful in providing tight bounds. On average, they provide only approximately

3.2% less tight bounds relative to (IDEAL). In particular, when β = 0, they provide almost the

same LP bound as that of the ideal formulation. In addition, we report the ratio of instances

whose LP strength is above a certain value in Table 9. For example, it is reported that (SCF1)

provides LP strength of 100% for about 4.7% of instances. It provides LP strength greater than

99% for more than 50% of instances, and so on. In approximately 40% of the instances, (TF2) and

(S-STAR) provide the same LP bound as that of the ideal formulation. In addition, the difference

is less than 1% for more than 65% of instances.

In Table 10, we present the sizes of the formulations relative to the smallest one (SCF1). As

expected, the multi-commodity flow formulations are the largest. Particularly, when I = 25,

(MCF2) requires 12.4 times more variables and 23.5 times more constraints than (SCF1) which

may be prohibitively large. The average computation times for different problem dimensions are

shown in Table 11. This result also demonstrates that multi-commodity formulations are not viable
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Table 9: Test results on multi-period instances: Ratio of instances with LP strength above certain value

LP Strength
Extended Formulations Valid Inequalities

(SCF1) (SCF2) (MCF1) (MCF2) (TF1) (TF2) (GSEC) (S-STAR) �������� (ALL)

= 100% 4.72 4.72 4.72 21.57 34.26 41.30 4.72 41.30 14.44 41.67
> 99% 51.11 51.11 53.70 55.83 66.20 66.20 53.70 66.20 67.22 74.07
> 95% 74.35 74.35 74.81 80.56 80.28 80.28 74.81 80.28 83.43 84.26
> 90% 88.06 88.06 88.43 88.80 88.89 88.89 88.43 88.89 90.28 91.76

Table 10: Test results on multi-period instances: Relative formulation size

Factors
Variables Constraints

(SCF1) (SCF2) (MCF1) (SCF1) (SCF2)
(MCF1) (MCF2)

=(TF1) =(TF2) =(MCF2) =(TF1) =(TF2)

I
5 1.00 1.00 2.67 1.00 1.43 3.59 4.37

15 1.00 1.00 7.43 1.00 1.71 12.37 13.75
25 1.00 1.00 12.36 1.00 1.81 21.95 23.53

T
5 1.00 1.00 7.49 1.00 1.65 12.69 13.94

15 1.00 1.00 7.49 1.00 1.65 12.62 13.87
25 1.00 1.00 7.49 1.00 1.65 12.61 13.85

Average 1.00 1.00 7.49 1.00 1.65 12.64 13.89

Table 11: Test results on multi-period instances: Computation time

Factors
Computation Time (s)

(SCF1) (SCF2) (TF1) (TF2) (MCF1) (MCF2)

I
5 0.01 0.02 0.02 0.02 0.03 0.05

15 0.12 0.18 0.16 0.26 1.40 4.25
25 0.53 0.96 0.92 1.36 15.07 31.89

T
5 0.04 0.06 0.06 0.10 0.62 1.90

15 0.21 0.36 0.36 0.55 6.10 10.47
25 0.42 0.75 0.68 0.99 9.79 23.81

Average 0.22 0.39 0.37 0.55 5.50 12.06

options when the problem dimension increases.

Regarding the valid inequalities, as reported in Table 12, the numbers of added inequalities of

(S-STAR) and (U-STAR) are much larger than that of GSEC which can be regarded as a trade-off

for the tighter bound. We observe that most of the S-STAR and U-STAR inequalities added after

earlier iterations do not contribute significantly to the strengthening of the bounds. Nevertheless,

owing to the original purpose of the experiments, we did not terminate the separation which led

to a number of additional inequalities, most of which were not significant. In this regard, if these

inequalities are used as cutting planes in tree-search algorithms, more detailed analysis and further

studies on their effects are required.
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Table 12: Test results on multi-period instances: Number of added inequalities

Factors
Number of added inequalities

(GSEC) (S-STAR) (U-STAR) (ALL)

I
5 4.9 26.9 27.8 66.9

15 14.4 147.0 152.1 300.6
25 25.5 296.9 382.3 574.5

T
5 5.6 69.1 77.0 125.4

15 15.7 154.8 172.2 309.6
25 23.6 247.0 313.1 507.0

ρ
60 11.3 41.5 47.5 101.8
80 16.2 67.7 69.9 152.0

100 17.3 361.6 444.9 688.2

θ
50 18.3 153.3 180.7 309.4

100 11.6 160.6 194.2 318.7

β
0 0.0 215.3 263.8 376.0
1 29.9 98.6 111.1 252.0

Average 15.0 156.9 187.4 314.0

6. Conclusion

In this study, we address the lot-sizing and scheduling problem with sequence-dependent se-

tups and its single-period substructure. We present new families of valid inequalities and extended

formulations which demonstrate distinct advantages in tightening the LP relaxation bounds, com-

pared with the existing ones. Furthermore, we discuss the theoretical strengths of the proposed

inequalities and identify their facet-defining conditions; we also demonstrate that they can be

separated in polynomial time.

The results of this study can be utilized in various ways. The proposed valid inequalities can

be utilized to devise efficient solution algorithms for LSP-SQ. For instance, along with the known

results such as the (l, S)-inequality, one can propose a branch-and-cut algorithm. Specifically, when

used as cuts in the branch-and-cut algorithm, detailed algorithmic components such as the number

of cuts added in one iteration, the frequency of adding cuts during the tree search, and the order

in which cuts are added, affect the algorithm performance. Therefore, considering the algorithmic

elements, additional extensive computational experiments are required in future research.

In addition, the proposed time-flow formulation can be adapted to solve real-world prob-

lems. Heuristic algorithms based on mathematical programming methodologies such as LP or

MIP (matheuristics) have been popularly used to solve LSP-SQ occurs in various industries. The

performance of these heuristics is significantly affected by the tightness of the base formulation.

At the same time, the formulation with a large number of variables and constraints might be

prohibitive because it may have to be solved many times repeatedly. Considering this trade-off

between the formulation size and tightness, the proposed time-flow formulation can be utilized to
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improve the performance of various matheuristics.
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Appendix A. Proof of Propositions

We note that, for proofs in Appendix A, we only exhibit the values of some variables which

are relevant for the sake of simplicity. The variables x,y, z are assumed to zero unless otherwise

mentioned. The values of s+ and s− are automatically set with respect to the corresponding x

values and constraints (3b).

Proof of Proposition 2.1. The number of the total variables is I2+5I. As there are 3I+1 equality

constraints (3b) and (3e) – (3f) which are linearly independent, dim(conv(X )) ≤ I2 + 2I − 1.

Therefore, it is sufficient to find I2 + 2I linearly independent points. Because there are I extreme

rays of form s+i = s−i = 1, ∀i ∈ I, it is sufficient to find I2 + I points.

• For each i ∈ I, z0i = yi = zi0 = 1. (I points)

• For each i ∈ I, z0i = yi = zi0 = 1 and xi = ui. (I points)

• For each (i, j) ∈ A, z0i = yi = zij = yj = zj0 = 1, xi = min{ui, (K − stij)/2}, and

xj = min{uj , (K − stij)/2}. (I2 − I points)

It is obvious that the above I2 + I points are linearly independent.

We use the following Lemma 1 from Nemhauser & Wolsey (1988) to prove other propositions.

Lemma 1 (Nemhauser & Wolsey (1988)). Given a polyhedron P = {x ∈ R
n : Ax ≤ b}, let

(A=, b=) be the equality set of P ⊆ R
n and M= be the corresponding constraint index set. Also, let

F = {x ∈ P : πx = π0} be a proper face of P . The following two statements are equivalent:

1. F is a facet of P .

2. If λx = λ0 for all x ∈ F , then

(λ, λ0) = (uπ + vA=, uπ0 + vb=) for some u ∈ R
1 and some v ∈ R

|M=|.

Proof of Proposition 2.2. Let us consider a hyperplane
∑

i∈I(αixi + β+
i s

+
i + β−

i s
−
i + γiyi) +∑

(i,j)∈A0
δijzij = π0 which contains all points (x, s+, s−,y, z) in the face defined by constraint (3c).

We show that (α,β+,β−,γ, δ) is the sum of a scalar multiple of the coefficients in constraint (3c)

and the equality system.

Firstly, without loss of generality, we can let γi = 0 for all i ∈ I because yi can be replaced with∑
j∈I0 zij . Moreover, as there are I extreme rays of form s+i = s−i = 1, we can let β+

i + β−
i = 0.

Due to constraints (3b), β+
i s

+
i + β−

i s
−
i = β+

i (s
+
i − s−i ) = β+

i (di − xi). Therefore, we also can let

β+
i = β−

i = 0 for all i ∈ I without loss of generality. Now, consider the following points which

satisfy constraint (3c) at equality:
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• For i ∈ I, let z0i = yi = zi0 = 1 and xi = K. Then, αiK + δ0i + δi0 = π0. Consequently,

δ0i = π0 − αiK − δi0.

• For (i, j) ∈ A, let z0i = yi = zij = yj = zj0 = 1. Then, xi + xj = K − stij and the following

two cases are possible.

1. (xi, xj) = (0,K − stij), then αj(K − stij) + δ0i + δij + δj0 = π0.

2. (xi, xj) = (K − stij , 0), then αi(K − stij) + δ0i + δij + δj0 = π0.

From the above cases, αi = αj = α∗ and

δij = π0 − δ0i − δj0 − α∗(K − stij)

= π0 − (π0 − α∗K − δi0)− δj0 − α∗(K − stij)

= δi0 − δj0 + α∗stij .

Therefore,
∑

i∈I(αixi + β+
i s

+
i + β−

i s
−
i + γiyi) +

∑
(i,j)∈A0

δijzij = π0 can be written as follows:

(⇔)
∑
i∈I

α∗xi +
∑
i∈I

(
δi0zi0 + δ0iz0i

)
+

∑
(i,j)∈A

δijzij = π0

(⇔)
∑
i∈I

α∗xi +
∑
i∈I

(
δi0zi0 + (π0 − α∗K − δi0)z0i

)
+

∑
(i,j)∈A

(δi0 − δj0 + α∗stij)zij = π0

(⇔) α∗
(∑

i∈I

(
xi −Kz0i

)
+

∑
(i,j)∈A

stijzij

)
+

∑
i∈I

δi0

(
zi0 − z0i +

∑
j∈I

(
zij − zji

))
+ π0(

∑
i∈I

z0i) = π0

(⇔) α∗
(∑

i∈I
xi +

∑
(i,j)∈A

stijzij −K
)
+

∑
i∈I

δi0(
∑
j∈I0

zij −
∑
j∈I0

zji) + π0(
∑
i∈I

z0i − 1) = 0

In the last equation, the first term is a scalar multiplication of the constraint (3c), whereas the

second and third terms are scalar multiplications of the equality set. Therefore, from Lemma 1, it

is shown that constraint (3c) is a facet-defining inequality.

Proof of Proposition 2.3. For a given i ∈ I, consider the following points:

• z0i = yi = zi0 = 1 and xi = ui. (1 point)

• For each j ∈ I \ {i}, z0j = yj = zj0 = 1 and xj = 0. (I − 1 points)

• For each j ∈ I \ {i}, z0j = yj = zj0 = 1 and xj = uj . (I − 1 points)

• For each j ∈ I \ {i}, z0i = yi = zij = yj = zj0 = 1, xi = ui, and xj = min{K − stij − ui, uj}.
(I − 1 points)

• For each j ∈ I \ {i}, z0j = yj = zji = yi = zi0 = 1, xi = ui, and xj = min{K − stji − ui, uj}.
(I − 1 points)
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• For each (j, k) ∈ A such that j �= i and k �= i, z0j = yj = zjk = yk = zk0 = 1, xj =

min{uj , (K − stjk)/2}, and xk = min{uk, (K − stjk)/2}. ((I − 1)(I − 2) points)

There are total I2+I−1 linearly independent points. Together with I linearly independent extreme

lays of form s+i = s−i = 1 for all i ∈ I, it is demonstrated that constraint (3d) is a facet defining

inequality of conv(X ).

Proof of Proposition 2.4. For a given i ∈ I, consider the following points:

• z0i = yi = zi0 = 1 and xi = K. (1 point)

• For each j ∈ I \ {i}, z0j = yj = zj0 = 1 and xj = 0. (I − 1 points)

• For each j ∈ I \ {i}, z0j = yj = zj0 = 1 and xj = uj . (I − 1 points)

• For each j ∈ I \ {i}, z0i = yi = zij = yj = zj0 = 1 and xi = K − stij . (I − 1 points)

• For each j ∈ I \ {i}, z0j = yj = zji = yi = zi0 = 1 and xi = K − stji. (I − 1 points)

• For each (j, k) ∈ A such that j �= i and k �= i, z0j = yj = zjk = yk = zk0 = 1, xj =

min{uj , (K − stjk)/2} and xk = min{uk, (K − stjk)/2}. ((I − 1)(I − 2) points)

There are total I2 + I − 1 linearly independent points. Together with I linearly independent

extreme lays of form s+i = s−i = 1 for all i ∈ I, it is demonstrated that constraint (4) defines a

facet of conv(X0).

Proof of Proposition 3.2. Let us consider a hyperplane
∑

i∈I αixi +
∑

(i,j)∈A0
δijzij = π0 which

contains all points (x, s+, s−,y, z) in the face defined by inequality (5), given S ⊆ I. As shown in

the proof of Proposition 2.2, we can assume that the coefficients of s+, s−, and y is zero. Consider

the following points which satisfy inequality (5) at equality, given S:

• For each i ∈ S, z0i = yi = zi0 = 1. Then, xi = K and αiK + δ0i + δi0 = π0, that is,

δi0 = π0 − δ0i − αiK for all i ∈ S.

• For each i ∈ I \ S, z0i = yi = zi0 = 1. Then, xi can have any value between 0 and K which

indicates αi = 0 and δi0 = π0 − δ0i for all i ∈ I \ S.
• For each (i, j) ∈ E(S), z0i = yi = zij = yj = zj0 = 1. In this case, xi and xj can have any

values satisfying xi + xj = K − stij . There exist many combinations satisfying xi + xj =

K − stij . Therefore, αi = αj = α∗ and δij = π0 −α∗(K − stij)− δ0i − δj0 = α∗stij − δ0i + δ0j

for all (i, j) ∈ E(S).

• For each (i, j) ∈ E(S : I \ S), z0i = yi = zij = yj = zj0 = 1 and xi = K − stij . Therefore,

α∗(K−stij)+δ0i+δij+δj0 = π0, that is, δij = α∗(stij−K)−δ0i+δ0j for all (i, j) ∈ E(S : I\S).
• For each (i, j) ∈ E(I \ S : S), z0i = yi = zij = yj = zj0 = 1 and xj = K − stij . Therefore,

α∗(K − stij) + δ0i + δij + δj0 = π0, that is, δij = α∗stij − δ0i + δ0j for all (i, j) ∈ E(I \S : S).
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• For each (i, j) ∈ E(I \ S), z0i = yi = zij = yj = zj0 = 1. In this case, δij = π0 − δ0i − δj0 =

−δ0i + δ0j for all (i, j) ∈ E(I \ S : S).

The term
∑

(i,j)∈A0
δijzij can be decomposed as

∑
i∈I

(δi0zi0 + δ0iz0i)

︸ ︷︷ ︸
(i)

+
∑

(i,j)∈E(S)

δijzij

︸ ︷︷ ︸
(ii)

+

∑
(i,j)∈E(S:I\S)

δijzij

︸ ︷︷ ︸
(iii)

+
∑

(i,j)∈E(I\S:S)
δijzij

︸ ︷︷ ︸
(iv)

+
∑

(i,j)∈E(I\S)
δijzij

︸ ︷︷ ︸
(v)

.

The decomposed terms (i) to (v) can be stated as follows:

(i) =
∑
i∈S

(δi0zi0 + δ0iz0i) +
∑
i∈I\S

(δi0zi0 + δ0iz0i)

=
∑
i∈S

(
(π0 − δ0i − α∗K)zi0 + δ0iz0i

)
+

∑
i∈I\S

(
(π0 − δ0i)zi0 + δ0iz0i)

=π0
∑
i∈I

zi0 +
∑
i∈I

δ0i(z0i − zi0)− α∗K
∑
i∈S

zi0

(ii) =
∑

(i,j)∈E(S)

(
α∗stij − δ0i + δ0j

)
zij = α∗ ∑

(i,j)∈E(S)

stijzij +
∑
i∈S

δ0i

(∑
j∈S

zji −
∑
j∈S

zij

)

(iii) =
∑

(i,j)∈E(S:I\S)

(
α∗stij − α∗K − δ0i + δ0j

)
zij

=α∗ ∑
(i,j)∈E(S:I\S)

(stij −K)zij +
∑

j∈I\S
δ0j

(∑
i∈S

zij

)
−

∑
i∈S

δ0i

( ∑
j∈I\S

zij

)

(iv) =
∑

(i,j)∈E(I\S:S)

(
α∗stij − δ0i + δ0j

)
zij

=α∗ ∑
(i,j)∈E(I\S:S)

stijzij +
∑
j∈S

δ0j

( ∑
i∈I\S

zij

)
−

∑
i∈I\S

δ0i

(∑
j∈S

zij

)

(v) =
∑

(i,j)∈E(I\S)
(−δ0i + δ0j)zij =

∑
i∈I\S

δ0i

( ∑
j∈I\S

zji −
∑

j∈I\S
zij

)

Therefore,
∑

i∈I αixi +
∑

(i,j)∈A0
δijzij = π0 is reduced to
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α∗
(∑

i∈S
xi +

∑
(i,j)∈δ(S)

stijzij +
∑

(i,j)∈E(S)

stijzij −K
∑

(i,j)∈δ+(S)

zij

)
+

π0

(∑
i∈I

zi0 − 1
)
+

∑
i∈I

δ0i

( ∑
j∈I0

zji −
∑
j∈I0

zij

)
= 0.

Because the second and third terms are scalar multiplications of the equality set and the first term

is that of the inequality (5), it defines a facet of conv(X0).

Proof of Proposition 3.4. Inequality (8) can be rewritten as

∑
i∈S

xi ≤
∑
i∈S

uiyi −
∑

(i,j)∈E(S)

[ui + stij + uj −K]+zij ,

where [a]+ = max{0, a}. To show that this inequality is valid for X , let us given a feasible solution

(x̄, s̄+, s̄−, ȳ, z̄). Then, z̄ forms a cycle C = {(i, j) : z̄ij = 1, (i, j) ∈ A0} which includes node 0.

The set of nodes included in C is denoted as V (C).

If ui + stij + uj ≤ K for all (i, j) ∈ E(S) ∩ C, then the inequality trivially holds because it is

reduced to an aggregated upper bound constraint for i ∈ S. Therefore, let R ⊆ E(S)∩C such that

ui + stij + uj > K for (i, j) ∈ R, and let R �= ∅. In addition, assume that R forms a path, that is,

R = {(i1, i2), (i2, i3), · · · , (il−2, il−1), (il−1, il)} (If not, R can be partitioned into several mutually

exclusive paths. Applying the following logic to each of them separately is straightforward and the

proof still holds.). Then, from the following relations, it is demonstrated that the U-STAR inequality

is valid:

∑
i∈S

uiȳi −
∑

(i,j)∈E(S)

[ui + stij + uj −K]+z̄ij =
∑

i∈S∩V (C)

ui −
∑

(i,j)∈R
(ui + stij + uj −K)

=
∑

i∈S∩V (C)

ui −
l−1∑
k=1

(uik + uik+1
+ stikik+1

−K) ≥ (l − 1)K − (ui2 + · · ·uil−1
)−

l−1∑
k=1

stikik+1

=K + (K − ui2) + · · ·+ (K − uil−1
)−

l−1∑
k=1

stikik+1
≥ K −

l−1∑
k=1

stikik+1
≥

∑
i∈S

x̄i.

Proof of Proposition 3.5. For a given S ⊆ I, consider the following points satisfying constraint (8)

at equality:

• For each i ∈ S, z0i = yi = zi0 = 1 and xi = ui. (|S| points)

• For each i ∈ I \ S, z0i = yi = zi0 = 1 and xi = 0. (I − |S| points)

• For each i ∈ I \ S, z0i = yi = zi0 = 1 and xi = ui. (I − |S| points)
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• For each (i, j) ∈ E(I \ S), z0i = yi = zij = yj = zj0 = 1 and xi = xj = 0. ((I − |S|)(I −
|S| − 1) points)

• For each (i, j) ∈ E(S : I \ S), z0i = yi = zij = yj = zj0 = 1 and xi = ui. (|S|(I − |S|)
points)

• For each (i, j) ∈ E(I \ S : S), z0i = yi = zij = yj = zj0 = 1 and xj = uj . (|S|(I − |S|)
points)

• For each (i, j) ∈ E(S), let z0i = yi = zij = yj = zj0 = 1. In this case, xi + xj should be equal

to K − stij . From the second condition of the proposition, K − stij < ui + uj . Therefore,

one can let (xi, xj) = (ui,K − stij − ui). (|S|(|S| − 1) points)

• Choose one element from S, say i∗. Then, for each j ∈ S \ {i∗}, let z0i∗ = yi∗ = zi∗j = yj =

zj0 = 1 and (xi∗ , xj) = (K − sti∗j − uj , uj). (|S| − 1 points)

It is not hard to see that the above I2 + I − 1 points are affinely independent.

Appendix B. Pattern-based Formulation

We present a pattern-based formulation which is obtained by applying Dantzig-Wolfe decom-

position for the original LSP-SQ. In particular, we apply a period-wise decomposition, that is,

each pattern corresponds to a production plan of a single period. Let Pt be the set of possible

production schedules in period t. For each pattern p ∈ Pt, the following associated parameters are

defined:

• x̄pit: Production amount of item i in pattern p ∈ Pt.

• ȳpit = 1 if item i is produced in pattern p ∈ Pt.

• z̄pijt = 1 if setup from item i to j occurs in pattern p ∈ Pt.

• Ctp: Sum of the production and setup costs of pattern p ∈ Pt, corresponding to (x̄p, ȳp, z̄p).

Let the pattern variable λtp = 1 if the pattern p ∈ Pt is selected in period t. The master problem

(MP) is represented as follows:

(MP) minimize
∑
t∈T

∑
p∈Pt

Ctpλtp +
∑
i∈I

∑
t∈T

(hcitsit + bcitbit) (B.1a)

subject to sit−1 − bit−1 +
∑
p∈Pt

x̄pitλtp = dit + sit − bit ∀i ∈ I, t ∈ T (B.1b)

∑
p∈Pt

z̄p0itλtp =
∑

p∈Pt+1

z̄pi0t+1λt+1p ∀i ∈ I, t ∈ T \ {T} (B.1c)

∑
p∈Pt

λtp = 1 ∀t ∈ T (B.1d)
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sit, bit ≥ 0 ∀i ∈ I, t ∈ T (B.1e)

λtp ∈ {0, 1} ∀t ∈ T , p ∈ Pt (B.1f)

Demand constraints (1b) and setup carryover constraints (1e) of the original LSP-SQ (1) are

kept in (MP) as linking constraints (B.1b)–(B.1c). Other constraints are presented in subproblems.

It is known that, as the pattern incorporates all the decisions regarding a single period, the LP

relaxation bound of (MP) is equivalent to that which is obtained when the convex hull of the

single-period solution set X is known (Wolsey, 2020).

The LP relaxation of (MP) is solved by a column generation procedure which recursively adds

profitable columns by solving pricing subproblems until no one is found (Desaulniers et al., 2006).

Let μit, πit, and σt be the dual variables of constraints (B.1b)–(B.1d), respectively. Then, the

pricing subproblem for period t which tries to find profitable patterns by minimizing the reduced

cost can be constructed as follows:

(SPt) min
∑
i∈I

(
(pcit − μit)xit − πitz0it + πit−1zi0t

)
+

∑
(i,j)∈A

scijtzijt (B.2a)

s.t.
∑
i∈I

xit +
∑

(i,j)∈A
stijtzijt ≤ Kt (B.2b)

xit ≤ uityit ∀i ∈ I (B.2c)∑
i∈I

z0it = 1 (B.2d)

∑
j∈I0

zjit =
∑
j∈I0

zijt = yit ∀i ∈ I (B.2e)

∑
i∈I

f0it =
∑
i∈I

yit (B.2f)

∑
j∈I0\{i}

fjit −
∑

j∈I0\{i}
fijt = yit ∀i ∈ I (B.2g)

fijt ≤ Izijt ∀(i, j) ∈ A0 (B.2h)

xit ≥ 0, yit ∈ {0, 1} ∀i ∈ I (B.2i)

fijt ≥ 0, zijt ∈ {0, 1} ∀(i, j) ∈ A0 (B.2j)

We use single-commodity flow formulation (B.2f)–(B.2h) to ensure the validity of cycles. If the

optimal objective value of (SPt) is smaller than σt, that is, if a pattern with the negative reduced

cost is found, the pattern corresponding to the optimal solution of (SPt) is added to (MP). This

procedure is repeated until no pattern is generated by (SPt) for all t ∈ T .
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