
New Integer Optimization Models and an Approximate Dynamic
Programming Algorithm for the Lot-sizing and Scheduling Problem with

Sequence-dependent Setups

Younsoo Leea, Kyungsik Leea,∗

aDepartment of Industrial Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic
of Korea

Abstract

In this paper, we propose new integer optimization models for the lot-sizing and scheduling prob-

lem with sequence-dependent setups, based on the general lot-sizing and scheduling problem. To

incorporate setup crossover and carryover, we first propose a standard model that straightforwardly

adapts a formulation technique from the literature. Then, as the main contribution, we propose

a novel optimization model that incorporates the notion of time flow. We derive a family of valid

inequalities with which to compare the tightness of the models’ linear programming relaxations.

In addition, we provide an approximate dynamic programming algorithm that estimates the value

of a state using its lower and upper bounds. Then, we conduct computational experiments to

demonstrate the competitiveness of the proposed models and the solution algorithm. The test

results show that the newly proposed time-flow model has considerable advantages compared with

the standard model in terms of tightness and solvability. The proposed algorithm also shows

computational benefits over the standard mixed integer programming solver.

Keywords: Production, Lot-sizing and scheduling problem, Integer optimization model,

Sequence-dependent setup, Approximate dynamic programming algorithm

1. Introduction

The lot-sizing and scheduling problem (LSP) simultaneously determines the sizes of production

lots and the production sequence within a given planning horizon. The objective is to minimize the

total costs, including the production cost, inventory holding cost, backlog penalty cost, and setup

cost. There have been many studies on this problem over recent decades, resulting in substantial

advancements. However, as real-world manufacturing processes have a variety of unique character-

istics and the features to be considered have been evolving, there remain outstanding issues not yet

∗Corresponding author.
Email addresses: fifays@snu.ac.kr (Younsoo Lee), optima@snu.ac.kr (Kyungsik Lee)

Preprint submitted to European Journal of Operational Research December 25, 2021© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

Accepted Manuscript : https://doi.org/10.1016/j.ejor.2021.12.032

completely resolved, and indeed, active research on optimization models and solution approaches

tailored to solve real problems continues.

One of the important factors to consider in the LSP is setup activity. In certain manufacturing

environments where it can be performed immediately at a small cost, the setup often is ignored

when establishing the production plan. However, in cases where the setup takes a considerable

amount of time or incurs substantial costs, it should be considered carefully in the planning stage.

Moreover, in many real manufacturing processes, the setup is sequence-dependent; that is, its cost

and time depend on both the item that was produced before and that which will be produced

subsequently. It is known that sequence dependency makes the LSP much more difficult to solve

(see Guimarães et al., 2014). In this study, we focused on solving the LSP with long and sequence-

dependent setups.

LSPs with long and sequence-dependent setups are common in many manufacturing processes.

In the fine-chemical process industry considered by Sung & Maravelias (2008), for instance, the

setup takes a significant amount of time, as it includes several activities such as cleansing and

testing. Similarly, in the flat-panel display manufacturing process studied by Lee & Lee (2020),

the setup for highly automated equipment can take even longer than a day and occurs in a sequence-

dependent manner. Certainly, in these manufacturing environments, the setup must be considered

as an important factor in the planning stage.

There are several LSP models, which are broadly classified into big bucket models and small

bucket models (see Copil et al., 2017, for a detailed review of these models). The bucket length

of typical big bucket models is relatively long; therefore, several items can be produced within a

single bucket. In small bucket models, contrastingly, the length of each bucket is relatively short,

such that only one or at most two items can be produced within a bucket. One alternative model is

the general lot-sizing and scheduling problem (GLSP, Fleischmann & Meyr, 1997), which is often

called a hybrid of the big and small bucket models because it uses a two-level time structure. In the

GLSP, the planning horizon is divided into multiple macroperiods the lengths of which are fixed.

Each macroperiod is then divided into several microperiods the lengths of which are variables to

be determined. External dynamics such as the arrival of the demand or inspection of the inventory

levels are modeled at the end of the macroperiods, while internal dynamics such as the production

amounts and the start/end of the setups are modeled within the microperiods.

When the setup takes a relatively long time, it can occur across consecutive time buckets, which

situation is called setup crossover. In addition, setup carryover, which indicates the preservation

of the setup state across time buckets, should be allowed in order to avoid unnecessary setups. As

shown by Fiorotto et al. (2020), if setup crossover and carryover are not considered, the quality

of the established production schedule can deteriorate significantly, or a feasible schedule may

not be found even if it exists. Previous studies have discussed setup crossover and carryover

and their consideration (Suerie, 2006; Belo-Filho et al., 2014; Fiorotto et al., 2017). Particularly,

there has been much effort devoted to development of big bucket models that can consider various

2

characteristics such as nontriangular sequence-dependent setup as well as setup crossover and

carryover, which has resulted in more complex models with a larger number of variables and

constraints (e.g. Menezes et al., 2011; Clark et al., 2014; Mahdieh et al., 2018).

As pointed out by Almeder & Almada-Lobo (2011), GLSP-based models enable accurate mod-

eling, as they incorporate the two-level time structure. For these models, unlike big bucket models,

consideration of sequence-dependent setup is straightforward. Because the sequence of the micrope-

riods is fixed, the production sequence within each macroperiod is naturally obtained (Camargo

et al., 2012). Moreover, setup carryover can be expressed in such a way that the setup states

of the last microperiod in the previous macroperiod and the first microperiod in the subsequent

macroperiod are identical.

The modeling framework of the GLSP also is beneficial when the setup times are relatively

long, because the maximum number of items that can be produced within a macroperiod is small,

which leads to a smaller number of microperiods. Therefore, to deal with the long and sequence-

dependent setups in this study, we focused on GLSP-based models. However, to the best of our

knowledge, there is a lack of studies addressing setup crossover for GLSP-based models. Moreover,

as pointed out by Almada-Lobo et al. (2015), introducing setup crossover into GLSP-based models

is not straightforward.

Our contributions are as follows. We first propose a standard GLSP-based (ST) model that

straightforwardly adapts a formulation technique from the literature to incorporate setup crossover.

Then, as the main contribution, we propose a novel time-flow (TF) model that uses a set of decision

variables representing the time flow for consideration of setup crossover. The (TF) model has con-

siderable advantages over (ST) model in terms of tightness of linear programming (LP) relaxation

and solvability with the standard mixed integer programming (MIP) solver. These advantages

are demonstrated by both theoretical analysis with a family of valid inequalities and the results

of computational experiments. In addition, we propose an approximate dynamic programming

(ADP) algorithm that estimates the value of a state using its lower and upper bounds. The ADP

algorithm showed computational benefits over the standard MIP solver. Also, its performance was

revealed to be competitive with a state-of-the-art big bucket model.

The remainder of this paper is organized as follows. In Section 2, we review the literature

related to both the problem and the solution algorithm that we consider. In Section 3, we present

the optimization models and describe the differences among them by deriving a family of valid

inequalities. In Section 4, we propose an ADP algorithm. In Section 5, we present the results of

computational experiments. In Section 6, we conclude and look ahead to possible future extensions

of the present work.

3

2. Literature Review

Relatively recent and comprehensive reviews of the LSP with sequence-dependent setups can be

found in Guimarães et al. (2014) and Copil et al. (2017). Carvalho & Nascimento (2021) addressed

parallel machine LSP with nontriangular sequence-dependent setups and setup carryover. The au-

thors devised matheuristic algorithms by hybridizing mathematical programming and local search

heuristics. Melega et al. (2020) studied a two-stage lot-sizing, scheduling and cutting stock problem

in which the cutting decision is made in the first stage, while the lot-sizing and scheduling decisions

are made in the second stage. Specifically, the authors, considering the sequence-dependent setups

in both stages, proposed a heuristic algorithm combining a column generation approach and a

relax-and-fix heuristic to deal with their integrated problem. Mahdieh et al. (2018) considered the

LSP with nontriangular sequence-dependent setups, setup crossover, and carryover, proposing a

multi-commodity-based big bucket model as an extension of the model presented in Clark et al.

(2014).

The GLSP was first proposed by Fleischmann & Meyr (1997). As its name indicates, the

GLSP can be regarded as a generalization of various models of LSP, because it has a two-level

time structure consisting of macroperiods of fixed length and microperiods of variable length.

The authors formally formulated the model, clarified the relationship between the GLSP and the

existing models, and devised a heuristic algorithm that employs a local-search algorithm. Later,

Koçlar & Süral (2005) indicated that the original GLSP provided by Fleischmann & Meyr (1997)

has a minor limitation and corrected it. As indicated by Camargo et al. (2012), sequence-dependent

setups can be incorporated into GLSP naturally because the sequence of microperiods is fixed.

Meyr (2000) proposed an extension of the GLSP that considers a sequence-dependent setup,

namely, GLSPST. In addition, the heuristic algorithm of Fleischmann & Meyr (1997) was improved

using a dual reoptimization technique. Meyr (2002) and Meyr & Mann (2013) considered the

GLSPST with parallel machines, and solved it with heuristic algorithms. Recently, several studies

have shown that the GLSPST can be extended to more general settings. Alem et al. (2018)

considered the LSP with demand uncertainty and proposed a robust optimization model based on

the GLSPST. Alipour et al. (2020) addressed the LSP with perishable products in the context of

the food industry. They modeled the problem based on the GLSPST and proposed MIP-based

heuristic algorithms.

Guimarães et al. (2014) pointed out that the GLSPST can be tightened using the well-known

network flow reformulation presented by Wolsey (1997). Starting from the tightened GLSPST

presented in Guimarães et al. (2014), we herein propose new GLSP-based models that can consider

sequence-dependent setup, setup crossover, and carryover.

In fact, for consideration of setup crossover and carryover, various models have been proposed

(see Fiorotto et al., 2020, for an extensive review). They are based on either big or small bucket

models. Suerie & Stadtler (2003) proposed a big bucket model that incorporates setup carryover.

4

The authors then derived an extended formulation and presented families of valid inequalities.

Later, this model was extended by Mohan et al. (2012) to further consider setup crossover. Suerie

(2006) proposed two small bucket models that consider setup crossover.

Almada-Lobo et al. (2007) presented big bucket models with both sequence-dependent setup

and setup carryover. These models treat a production sequence in a macroperiod as a connected

path or cycle without any subtours. Based on these results, Menezes et al. (2011) further developed

models to incorporate nontriangular setups by identifying certain types of admissible subtours.

Further, the authors devised a new big bucket model that consider setup carryover and crossover

simultaneously. It was shown by Fiorotto et al. (2017) that this model performs better than that

proposed by Mohan et al. (2012). Therefore, we applied the formulation technique of Menezes

et al. (2011) to the model of Guimarães et al. (2014), resulting in our first, standard model (ST).

Like most optimization problems, the LSP can be reformulated as a dynamic programming

(DP) problem. In fact, DP has been an essential solution approach for many lot-sizing problems.

Since first being addressed by Wagner &Whitin (1958), many DP algorithms for lot-sizing problems

have been proposed (e.g., Federgruen & Tzur, 1991). For a well-organized summary of the various

algorithms for the class of LSP, including DP, readers are referred to Pochet & Wolsey (2006).

Except for certain special cases such as the uncapacitated problem, however, most real-world

LSPs are difficult to solve via DP, because they often have a prohibitively large number of states.

Therefore, obtaining an optimal solution of practical, large instances seems unpromising, because

the number of states increases exponentially with the instance size. In order to avoid this issue,

known as the “curse of dimensionality (Powell, 2007)”, ADP algorithms have been widely employed.

One of the most popular strategies of ADP is the value function approximation (Powell, 2016),

which estimates the value of each state without recursive evaluation of future states.

There are many possibilities for approximating value functions for various problems. For in-

stance, to solve multi-dimensional knapsack problems, Bertsimas & Demir (2002) used both the

primal and dual bounds of the true state value, which were obtained by simple heuristic algo-

rithms and LP relaxation, respectively. In addition, the authors proposed ADP algorithms with

parametric and nonparametric approximations. Büyüktahtakın & Liu (2016) proposed various

ADP algorithms for a single-item capacitated lot-sizing problem. Using the characteristics of the

inventory cost function, they devised a direct-connection algorithm and a slope-check algorithm

based on the sampling of the states. See Powell (2007, 2016) for several other successful applica-

tions of ADP. In this paper, we present an ADP algorithm that is similar to the approach presented

by Bertsimas & Demir (2002). To obtain primal bounds, we used an LP-based fixing heuristic also

known as integer rounding heuristic or LP-rounding heuristic. This heuristic has been widely used

to solve LSPs. Maes et al. (1991) proposed several variants of the heuristic and compared their

performance for multi-level problems. Alfieri et al. (2002) applied the LP-rounding heuristic to

several LSP models and analyzed the differences.

5

3. Integer Optimization Models

Let I = {1, . . . , I}, T = {1, . . . , T}, S = {1, . . . , S} be the sets of items, macroperiods, and

microperiods, respectively. Throughout the exposition, i, j ∈ I, t ∈ T , s ∈ S are used for indices.

Let hcit, bcit, pcit, and dit denote the unit inventory holding, backlogging, production cost, and

demand for each item i and macroperiod t, respectively. Also, let scijt be the cost incurred when

setup occurs from item i to item j in macroperiod t. The production capacity for macroperiod t,

given in time units, is denoted by Kt. The unit production time of item i is ai, while the time

required for setup from item i to item j is stij . We also define stii for item i and let the values be

zero to represent the situation wherein the setup state is carried over. We let St ⊂ S be the set

of microperiods that are contained in macroperiod t. The first and the last microperiods within

the macroperiod t are denoted by f t and lt, respectively. In other words, St = {f t, f t + 1, . . . , lt}.
Moreover, for microperiod s, we define T (s) as the macroperiod that contains s; that is, T (s) = t

if and only if s ∈ St. Let startt and endt be the start/end time of macroperiod t; that is,

startt =
∑t−1

k=1Kt and endt =
∑t

k=1Kt for all t ∈ T .

Next, we define the decision variables. Let Iit and Bit be the inventory level and backlog amount

of item i at the end of macroperiod t. The initial inventory and backlog for item i are denoted by

Ii0 and Bi0, which are assumed to be zero. The variable xis represents the production amount of

item i in microperiod s. Binary variable yis is equal to one if item i is produced in microperiod s.

For i, j ∈ I and s ∈ S \ {1}, binary variable zijs is equal to one if the setup from item i to j occurs

from microperiod s−1 to s. Variable ziis represents the setup carryover of item i from microperiod

s− 1 to s (see Meyr & Mann, 2013). For notational convenience, we additionally define zij1 for all

i, j ∈ I and let their values be zero. For i, j ∈ I and t ∈ T \ {1}, the binary variable qijt is equal

to one if the setup from item i to item j crosses over from macroperiod t − 1 to t. In this case,

the setup time is split into t− 1 and t. The continuous variable vijt represents the amount of the

corresponding setup time distributed to t − 1. It can be interpreted as the extra time borrowed

from macroperiod t − 1 to t for the setup crossover. Although there are no possibilities of setup

crossover at the beginning of the first macroperiod and at the end of the last macroperiod, we

define qij1, qitT+1, vij1, and vijT+1 for notational convenience and let their values be zero. All of

the notations are summarized in Table 1.

3.1. Standard Model (ST)

We first provide the standard model (ST). This model is a generalization of the model presented

by Guimarães et al. (2014) that can further consider setup crossover. After providing the model,

we illustrate how setup crossover and carryover can be represented with the GLSP-based model.

Later, this model is used to demonstrate the strength of our novel time-flow model (TF). The (ST)

is as follows:

6

Table 1: Nomenclature

Sets and Indices

I Set of items which are indexed by i and j; i, j ∈ I = {1, . . . , I}
T Set of macroperiods which are indexed by t; t ∈ T = {1, . . . , T}
S Set of microperiods which are indexed by s; s ∈ S = {1, . . . , S}
St Set of microperiods contained in a macroperiod t

Parameters

hcit Inventory holding cost of item i in macroperiod t

bcit Backlog penalty cost of item i in macroperiod t

pcit Production cost of item i in macroperiod t

scijt Setup cost incurred when setup occurs from item i to item j in macroperiod t

dit Demand of item i in macroperiod t

Kt Production capacity of macroperiod t given in time unit

ai Production time per unit of item i

stij Time required for setup from item i to j. stii = 0

T (s) Macroperiod that contains microperiod s, i.e., T (s) = t ⇔ s ∈ St

f t/lt First/last microperiod of macroperiod t, i.e., St = {f t, f t + 1, . . . , lt}
startt Start time of macroperiod t, i.e., startt =

∑t−1
k=1 Kk

endt End time of macroperiod t, i.e., endt =
∑t

k=1 Kk

Variables

Iit Inventory level of item i at the end of macroperiod t, Ii0 = 0

Bit Backlog amount of item i at the end of macroperiod t, Bi0 = 0

xis Production amount of item i in microperiod s

yis = 1 if item i is produced in microperiod s; yis = 0, otherwise

zijs = 1 if setup from item i to j occurs from microperiod s− 1 to s; zijs = 0, otherwise

qijt = 1 if setup from item i to j crosses over from macroperiod t− 1 to t; qijt = 0, otherwise

qij1 = qijT+1 = 0

vijt Setup time split into macroperiod t− 1, if qijt = 1; vijt = 0, otherwise

vij1 = vijT+1 = 0

minimize
∑
i∈I

∑
t∈T

(
hcitIit + bcitBit +

∑
s∈St

(
pcitxis +

∑
j∈I

scijtzijs

))
(1a)

subject to Iit −Bit + dit = Iit−1 −Bit−1 +
∑
s∈St

xis ∀i ∈ I, t ∈ T (1b)

∑
i∈I

∑
s∈St

(
aixis +

∑
j∈I

stjizjis
)
≤ Kt +

∑
i∈I

∑
j∈I

(
vijt − vijt+1

)
∀t ∈ T (1c)

aixis ≤ Ktyis ∀i ∈ I, t ∈ T , s ∈ St (1d)∑
i∈I

yi1 = 1 (1e)

yis =
∑
j∈I

zjis ∀i ∈ I, s ∈ S \ {1} (1f)

7

yis =
∑
j∈I

zijs+1 ∀i ∈ I, s ∈ S \ {S} (1g)

vijt ≤ stijqijt ∀i, j ∈ I, t ∈ T (1h)

qijt ≤ zijft ∀i, j ∈ I, t ∈ T (1i)

Iit, Bit, xis, yis, vijt ≥ 0 ∀i ∈ I, t ∈ T , s ∈ S (1j)

qijt, zijs ∈ {0, 1} ∀i, j ∈ I, t ∈ T , s ∈ S (1k)

The objective function (1a) is the sum of the inventory holding, backlog penalty, production,

and setup costs, which total is to be minimized. Constraints (1b) are balance equations between

the inventory, backlog, demand, and production amounts. Constraints (1c) ensure that the sum

of the production and setup times is less than or equal to the available capacity. The available

capacity in t is computed in consideration of the time required for setup crossover. Constraints

(1d) indicate that an item can be produced only if the corresponding setup occurs. Constraint

(1e) represents the start of production in the first microperiod. Constraints (1f) and (1g) logically

link the binary variables. They ensure that a setup from item i to j in microperiod s occurs if

and only if i is produced in s − 1 and j is produced in s. In other words, zijs = 1 if and only if

yis−1 = yjs = 1. Constraints (1h) ensure that the setup time can be split only if the corresponding

setup crossover occurs. The amount of split time is limited by the setup time. Constraints (1i)

indicate that if the setup crossover occurs from t−1 to t, the item setup for the first microperiod of

t can be determined. Constraints (1j) and (1k) ensure the domains of the variables. Note that the

binary restriction of variable y is not necessary because it is implied by the constraints (1e)–(1g)

and (1k).

With this model, a production plan can be represented as a network flow as shown in Figure 1.

The bar shown in the upper part of Figure 1 represents a production plan wherein the productions

y11 y16

· · ·

y22 y25 y27

. . .

...
...

...
...

yN3 yN4

· · ·
yNS

z122

z2N3

zNN4

zN25

z216 z127

Time· · ·

Periods
1 2 3 4 5 6s = · · · S

t = 1 2 T

item 1 item 2 item N item 2 item 1 item 2 item N

Figure 1: Illustration of the network flow corresponding to a production plan

8

and setups are indicated by the dashed and dark areas, respectively. This production plan is

represented as a network flow in the lower part of Figure 1. The setup variables correspond to the

arcs of the network, the flow balance equations of which correspond to the constraints (1e) – (1g).

In this example, the setup state of item N is carried over from s = 3 to s = 4; that is, zNN4 = 1.

Moreover, the setup between item 1 and item 2 is crossed over from t = 2 to t = 3; that is, q123 = 1.

3.2. Time-flow Model (TF)

We present the new time-flow model, which is denoted by (TF). For (TF), we introduce new

variables and additional notations. Let us define a continuous variable wijs to represent the start

time of the setup from item i to j in microperiod s, which can have a nonzero value only if zijs = 1.

Note that, from the definition, wij1 = 0 for all i, j ∈ I. In addition, let ris denote the idle time

associated with item i in microperiod s. Lijs and Uijs denote the lower and upper bounds on the

value of wijs, respectively. By adjusting these bounds, the model may or may not consider setup

crossover, as shown later. The (TF) is as follows:

minimize
∑
i∈I

∑
t∈T

(
hcitIit + bcitBit +

∑
s∈St

(
pcitxis +

∑
j∈I

scijtzijs

))
(2a)

subject to Iit −Bit + dit = Iit−1 −Bit−1 +
∑
s∈St

xis ∀i ∈ I, t ∈ T (2b)

∑
j∈I

(wjis + stjizjis) + aixis + ris =
∑
k∈I

wiks+1 ∀i ∈ I, s ∈ S (2c)

aixis + ris ≤ Ktyis ∀i ∈ I, t ∈ T , s ∈ St (2d)∑
i∈I

yi1 = 1 (2e)

yis =
∑
j∈I

zjis ∀i ∈ I, s ∈ S \ {1} (2f)

yis =
∑
j∈I

zijs+1 ∀i ∈ I, s ∈ S \ {S} (2g)

Lijszijs ≤ wijs ≤ Uijszijs ∀i, j ∈ I, s ∈ S \ {1} (2h)

Iit, Bit, xis, ris, yis, wijs ≥ 0 ∀i, j ∈ I, t ∈ T , s ∈ S (2i)

zijs ∈ {0, 1} ∀i, j ∈ I, s ∈ S (2j)

The objective function (2a) and other constraints (2b) and (2e)—(2g) are defined as in (1a),

(1b), and (1e)–(1g) of (ST), respectively. Constraints (2c) indicate that if an item i is set up in

microperiod s from the previous item j (zjis = 1), the sum of its start time (wjis), setup time (stji),

production time (aixis), and idle time (ris) is equal to the start time of the next setup to another

item k (wiks+1). Constraints (2c) can be regarded as the time-flow balance equations. Constraints

(2d) indicate that an item can be produced only if the corresponding setup occurs. Constraints

(2h) ensure that wijs cannot have a nonzero value unless the corresponding setup occurs. If the

9

corresponding setup occurs, its start time is bounded by Lijs and Uijs. Constraints (2i) and (2j)

ensure the domains of the variables.

Now, we show how to set the values of Lijs and Uijs. If s ∈ S \ {1} and s = fT (s), the

setup zijs can be crossed over. In this case, the setup start time wijs should be within the

range [startT (s−1), endT (s−1)], while the setup end time wijs + stij should be within the range

[startT (s), endT (s)]. Assuming that stij ≤ Kt for all i, j ∈ I and t ∈ T , the following holds:

startT (s−1) ≤ startT (s) − stij and endT (s−1) = startT (s) ≤ endT (s) − stij . Therefore, we can set

Lijs = startT (s)− stij and Uijs = startT (s) for all s ∈ S \{1} such that s = fT (s). On the contrary,

when s �= fT (s), there is no chance of setup crossover as both s − 1 and s belong to the same

macroperiod. In this case, we can set Lijs = startT (s) and Uijs = endT (s) − stij . In summary, we

have

Lijs =

{
startT (s) − stij if s = fT (s)

startT (s) if s �= fT (s)
∀i, j ∈ I, s ∈ S \ {1} (3a)

Uijs =

{
startT (s) if s = fT (s)

endT (s) − stij if s �= fT (s)
∀i, j ∈ I, s ∈ S \ {1} (3b)

It is easy to modify both models so as not to allow setup crossover. For (ST), we simply need

to set vijt = 0 and qijt = 0. In this case, (ST) becomes equivalent to the model of Guimarães et al.

(2014). For (TF), it is sufficient to modify Lijs = Uijs = startT (s) for all s = fT (s) in (3), such

that the first setup of a macroperiod starts at the very beginning of the macroperiod and there is

no chance for setup crossover from the previous macroperiod.

In Guimarães et al. (2014), GLSP is classified as a product-oriented microperiod model. There-

fore, following their classification scheme, (ST) and (TF) are also categorized as product-oriented

microperiod models. In addition, Copil et al. (2017) classified GLSP as a generic model among

various LSP models. Particularly, GLSP provides much flexibility in incorporating various exten-

sions such as sequence-dependent or nontriangular setups as well as setup carryover, thanks to its

two-level time structure. This is also true for (ST) and (TF) as they both are based on GLSP.

Moreover, our models can further consider setup crossover which allows for even more flexibility

than the basic GLSP.

3.3. Comparison of (ST) and (TF)

In this section, we compare the tightness of the LP relaxations of (ST) and (TF). For com-

parison, let PST, PTF and zSTLP , z
TF
LP be the sets of feasible solutions of the LP relaxations of (ST)

and (TF) and the optimal objective values of their LP relaxation (LP bound, for short), respec-

tively. For notational convenience, we use boldface to denote vectors and matrices; for example,

x := (xis)i∈I,s∈S .

10

Proposition 3.1. zTFLP ≥ zSTLP.

Proof. We show that for any given solution (Ī, B̄, x̄, r̄, ȳ, w̄, z̄) ∈ PTF, the corresponding solution

(I,B,x,y,v,q, z) ∈ PST with the same objective value can be constructed. Firstly, by letting

(I,B,x,y, z) = (Ī, B̄, x̄, ȳ, z̄), the constraints that are common in both models are satisfied. In

addition, we set vijt = starttz̄ijf t − w̄ijf t and qijt = z̄ijf t , for all i, j ∈ I and t ∈ T . Then,

constraints (1i) clearly hold. Moreover, constraints (1h) are satisfied by the bound constraints

(2h). For a given t ∈ T , the following result can be obtained by summing constraints (2c) for all

i ∈ I and s ∈ St:

∑
i∈I

∑
s∈St

(∑
j∈I

stjiz̄jis + aix̄is + r̄is
)
=

∑
i,j∈I

(
w̄ijf t+1 − w̄ijf t

)

=
∑
i,j∈I

((
startt+1z̄ijf t+1 − vijt+1

)
−
(
starttz̄ijf t − vijt

))

= startt+1 − startt −
∑
i,j∈I

(
vijt+1 − vijt

)
= Kt −

∑
i,j∈I

(
vijt+1 − vijt

)
.

The second equality holds by the relation between variables vijt and w̄ijf t constructed above, while

the third holds as
∑

i,j∈I z̄ijf t = 1 for all t ∈ T \ {1} and start1 = 0. Therefore, constraints (1c)

of (ST) are also satisfied. Finally, it is clear that if constraints (2d) are satisfied, then constraints

(1d) are satisfied. As a result, from any given solution in PTF, the corresponding solution that

satisfies the set of constraints defining PST can be constructed. Moreover, because the objective

functions are identical, their values are the same.

The above proposition shows that the LP bound of (TF) is at least as strong as that of (ST),

which means that PTF is at least as tight as PST. We then show that PTF can be tighter than PST. To

this end, we derive a family of valid inequalities for (ST) using (TF). Let X := {(i, s) : i ∈ I, s ∈ S}
be the set of pairs of an item and a microperiod that coincides with the nodes in Figure 1. Similarly,

for a given macroperiod t ∈ T , let Xt := {(i, s) : i ∈ I, s ∈ St}. For ease of notation, we denote an

arc
(
(i, s− 1), (j, s)

)
as (i, j, s). For X1, X2 ⊆ X , let E(X1, X2) be the set of arcs (i, j, s) such that

(i, s−1) ∈ X1 and (j, s) ∈ X2. In addition, for X ⊆ X , let E(X) := E(X,X), δ+(X) := E(X,XC),

and δ−(X) := E(XC , X).

Proposition 3.2. For a given subset of nodes X ⊆ X , the inequality

∑
(i,s)∈X

aixis +
∑

(j,i,s)∈E(X)

stjizjis +
∑

(j,i,s)∈δ−(X):

s �=fT (s)

stjizjis +
∑

(i,k,s+1)∈δ+(X):

s �=lT (s)

stikziks+1

≤
∑

(i,k,s+1)∈δ+(X)

endT (s)ziks+1 −
∑

(j,i,s)∈δ−(X)

startT (s)zjis ∀X ⊆ X (4)

11

is valid for (ST). Moreover, if we restrict X to be a subset of Xt for a given t ∈ T , inequality (4)

is presented in a more concise form:

∑
(i,s)∈X

aixis +
∑

(j,i,s)∈E(X)

stjizjis +
∑

(j,i,s)∈δ−(X):
s �=f t

stjizjis +
∑

(i,j,s+1)∈δ+(X):
s �=lt

stikziks+1

≤ Kt

∑
(j,i,s)∈δ−(X)

zjis ∀X ⊆ Xt, (5)

Proof. See Appendix A.

The meaning of inequality (5) is as follows: When
∑

(j,i,s)∈δ−(X) zjis = 0, there are no in-

coming arcs to X; therefore, the nodes in X and the adjacent arcs cannot be visited. When∑
(j,i,s)∈δ−(X) zjis ≥ 1, the right-hand side is greater than or equal to Kt. As the setup arcs that

may cross over are not included in the summations of the left-hand side, the inequalities are satis-

fied owing to the capacity constraints. Next, we show that inequalities (4) are not implied in (ST),

which means that PTF can be tighter than PST.

Proposition 3.3. The inequalities (4) are not dominated by the constraints of (ST).

Proof. As inequalities (5) belong to a family of valid inequalities (4), it is sufficient to show that

inequalities (5) can cut off some fractional solutions of (ST). We consider the fractional solution of

(ST) illustrated in Figure 2. This solution is constructed as follows: For a given t ∈ T , let f := f t

and l := lt. Then, for a given i ∈ I, let yis = 1 for s ∈ S such that s ≤ f or s ≥ l. Furthermore, let

ziif+1 = ziif+2 = · · · = ziil =
1
Kt

and zikf+1 = zkkf+2 = · · · = zkkl−1 = zkil =
Kt−1
Kt

for any k ∈ I.
We can easily observe that the constructed solution is feasible for PST.

By letting X = {(i, f + 1), (i, f + 2)}, ∑(j,i,s)∈δ−(X) zjis = 1
Kt

, and therefore, the right-hand

side of the corresponding inequality (5) is equal to one. Meanwhile, due to the setup constraints

1
Kt

1
Kt

1
Kt

Kt−1
Kt

Kt−1
Kt

Kt−1
Kt

1
Kt

X

f f + 1 · · · ls =

Figure 2: Illustration of the fractional solution of (ST)

12

aixif+1 ≤ Ktyif+1 and aixif+2 ≤ Ktyif+2, we can let xif+1 = xif+2 = 1
ai
. In this case, the left-

hand side of inequality (5) is at least greater than two. Therefore, inequality (5) is violated, which

means that the fractional solution is cut off by it.

With a slight abuse of notation, we define PST+(4) be the feasible set of the LP relaxation

of (ST) after adding the family of inequalities (4). In addition, for F ∈ {ST, ST + (4), TF}, let

QF := proj(I,B,x,y,z)PF; that is, the projection of PF onto the space of variables (I,B,x,y, z). The

above results yield the following corollary, which implies that zTFLP can be greater than zSTLP .

Corollary 3.4. QTF ⊆ QST+(4) � QST.

3.4. Facility Location Reformulation

After firstly being introduced by Krarup & Bilde (1977), the facility location (FL) reformulation

technique has been widely used for various LSP models. It is part of the folklore, so to speak, that

this reformulation significantly improves the quality of the LP bound; see, for example, Pochet

& Wolsey (2006). Our models also can be further tightened by the FL reformulation. The basic

idea is to use variables representing the fraction of demand for a specific period satisfied by the

production in another period. Let αist be the variable representing the fraction of the demand of

item i in macroperiod t satisfied by the production in microperiod s. As backlogging is allowed,

the demand in t can be served from any microperiod s. In addition, we use a dummy microperiod

S+1 to represent the demand that is not satisfied during the entire planning horizon; for example,

αiS+1t represents the fraction of demand of item i in macroperiod t that is not satisfied. The

following relations hold between the original variables (x, I,B) and the new variable α.

xis =
∑
t∈T

ditαist ∀i ∈ I, s ∈ S,

Iit =

T∑
l=t+1

lt∑
s=1

dilαisl ∀i ∈ I, t ∈ T ,

Bit =

t∑
l=1

S+1∑
s=f t+1

dilαisl ∀i ∈ I, t ∈ T .

Using the above relations, (ST) and (TF) can be reformulated as (ST-FL) and (TF-FL), respec-

tively. The complete models of (ST-FL) and (TF-FL) are given in Appendix B.

4. Approximate Dynamic Programming Algorithm

4.1. Dynamic Programming Reformulation

Before presenting the ADP algorithm, we first reformulate our problem as a DP problem. We

regard microperiods s = 1, . . . , S as stages. The state of the system at stage s, denoted by Rs, is

13

defined as a sequence of items that are set up up to microperiod s. Specifically, let Rs = (i1, . . . , is),

where ik denotes an index of the item that is set up in microperiod k. Thus, the state space at

stage s is defined as Rs = {(i1, . . . , is)| ik ∈ I, ∀k = 1, . . . , s}. The set of possible states at stage

s, given a previous state R̄s−1 = (̄i1, . . . , īs−1) ∈ Rs−1, is defined as

Rs(R̄s−1) = {(̄i1, . . . , īs−1, i)| i ∈ I} = {(R̄s−1, i)| i ∈ I}.

Let us define the value function Vs(Rs) as the minimum total cost, except for the setup cost from

1 to s, under a given fixed sequence Rs. The value function of the last stage S for a given RS ,

VS(RS), can be easily computed by solving an LP, because the entire setup sequence is already

determined. The problem is then to calculate the value function V0(R0), where R0 is a null

sequence in which nothing is fixed. When a state Rs−1 transitions to Rs, the corresponding

state transition cost occurs. Specifically, if Rs−1 = (i1, . . . , is−1) and Rs = (i1, . . . , is−1, is), the

transition cost Cs(Rs−1, Rs) is the setup cost between is−1 and is; that is, scis−1,is,T (s). We assume

that C1(R0, ·) = 0. With this definition, DP recursion can be expressed as

Vs−1(Rs−1) = min
Rs∈Rs(Rs−1)

{
Cs(Rs−1, Rs) + Vs(Rs)|Rs−1 = (i1, . . . , is−1)

}
= min

i∈I

{
scis−1,i,T (s) + Vs(i1, . . . , is−1, i)

}
, (6)

for s = 1, . . . , S. The last stage value function VS(·) is easy to compute, as previously mentioned.

Starting with s = S, V0(R0) can be calculated using the backward recursion of equation (6).

Subsequently, the optimal production sequence can be identified using

R∗
s = (R∗

s−1, i
∗
s) = (i∗1, . . . , i

∗
s) where i∗s = argmin

i∈I
{sci∗s−1,i,T (s) + Vs(i

∗
1, . . . , i

∗
s−1, i)}

for s = 1, . . . , S and R∗
0 = R0. However, as there is an exponential number of O(IS) states, the

number of states easily explodes when the number of items and periods increases. Therefore, it is

not practical to solve DP recursion exactly. In the following section, we present an ADP algorithm

to avoid the issue of the curse of dimensionality.

4.2. Approximate Dynamic Programming Algorithm

In our ADP algorithm, we use the approximated value function V̂s(Rs), which approximates

Cs(Rs−1, Rs) + Vs(Rs). Then, recursion (6) is modified as

Ṽs−1(Rs−1) = min
Rs∈Rs(Rs−1)

{
V̂s(Rs)|Rs−1

}
(7)

where Ṽs−1(Rs−1) is an estimate of the value of being at Rs−1. The approximated value function

V̂s(Rs) is constructed using both the lower bound LB(Rs) and the upper bound UB(Rs) of the

14

Algorithm 1: LPNF(P, γup, γdown, δ, Y0, Y1)

1 flag ← true; // set the flag

2 (obj,yLP)← solveLP (P,Y0,Y1) // get obj. value and sol. value of variable y
3 repeat
4 if yLP all binary then // if all y variables are binary,

5 (UBLPNF ,yLPNF)← (obj,yLP); // return UB and feasible sol.

6 break; // escape

7 end
8 forall (i, s) ∈ (I × S) \ {Y0 ∪ Y1} do
9 if yLP

is > γup then // fix to one

10 Y1 ← Y1 ∪ {(i, s)};
11 flag ← false;

12 else if yLP
is < γdown then // fix to zero

13 Y0 ← Y0 ∪ {(i, s)};
14 flag ← false;

15 end

16 end
17 if flag then // if no variables are fixed in current iteration

18 pick δ least fractional variables and put them in Y0 or Y1 ; // fix δ variables

19 end
20 flag ← true; // reset the flag

21 (obj,yLP)← solveLP (P,Y0,Y1);

22 until false;

23 return (UBLPNF ,yLPNF)

true value of Cs(Rs−1, Rs) + Vs(Rs). There are many different ways to obtain these bounds. One

can expect that if tighter LB(Rs) and UB(Rs) are used, the approximation will be more accurate

and the solution quality will be improved. In addition, as these bounds need to be obtained

repetitively in the ADP algorithm, it is important to do so in a short time. Considering this trade-

off, acquiring good bounds in a short time is a key aspect of the ADP algorithm. In this regard,

to obtain LB(Rs), we solve the LP relaxation of the problem with the partially fixed production

sequence Rs = (i1, . . . , is); that is, yikk = 1 for all 1 ≤ k ≤ s. To obtain UB(Rs) in the ADP

algorithm, we use a simple LP-based naive fixing (LPNF) heuristic algorithm as a subroutine.

The LPNF algorithm for an instance P is described in Algorithm 1. In the algorithm, LP

relaxation is recursively solved (lines 2, 21) with the subroutine solveLP (P,Y0,Y1) which provides

the solution and the objective value of the LP relaxation of P. The input parameters Y0 and Y1

are the index sets of variable y, which are fixed to zero and one, respectively. After obtaining the

fractional solution, variables whose values are greater than an upper threshold γup (0.5 ≤ γup < 1)

are fixed to one, while variables whose values are less than a lower threshold γdown (0 < γdown < 0.5)

are fixed to zero (lines 8–16). This procedure is repeated until all binary variables are fixed to zero

or one (lines 4–7). We only consider the binary condition of variable y, because if it is fixed to

binary values, the variable z is also restricted to binary values.

If all values of the nonfixed binary variables are neither below the lower threshold nor above

the upper threshold, during the iterations, the algorithm can run permanently. To avoid this, if

15

Algorithm 2: ADP(P, ε, λ, γup, γdown, δ)

1 Y1 ← ∅, Y0 ← ∅, s← 1, UBADP ←∞ ; // initialization

2 (obj,yLP)← solveLP (P,Y0,Y1) ; // solve LP relaxation

3 CAND(s)← getCand(yLP , λ, s) ; // select candidates to be evaluated at stage s
4 do
5 forall c ∈ CAND(s) do // evaluate each candidate state

6
(
LB(c),yLP (c)

)
← solveLP (P,Y0,Y1 ∪ {c}) ;

7
(
UB(c),yLPNF (c)

)
← LPNF (P, γup, γdown, δ,Y0,Y1 ∪ {c}) ;

8 if UB(c) < UBADP then // if better solution found

9 (UBADP ,yADP)← (UB(c),yLPNF (c))
10 end

11 V̂ (c)← (1− ε) · LB(c) + ε · UB(c);

12 end

13 c∗ ← argmin
c∈CAND(s)

V̂ (c);

14 Y1 ← Y1 ∪ {c∗};
15 CAND(s+ 1)← getCand(yLP (c∗), λ, s+ 1) ;
16 s← s+ 1;

17 while s < S;

18 (obj,yLP)← solveLP (P,Y0,Y1);

19 if obj < UBADP then
20 (UBADP ,yADP)← (obj,yLP)
21 end

22 return (UBADP ,yADP)

there are no variables to be fixed in an iteration, the least fractional variables are forcibly fixed to

zero or one, whichever is closer (lines 17–19). The number of variables that can be forcibly fixed

in one iteration is indicated by an integer parameter δ. Note that the LPNF algorithm for a given

instance P can use any of the previously presented models: (ST), (TF), (ST-FL), or (TF-FL).

With LB(Rs) and UB(Rs), calculated by the LP relaxation and the LPNF algorithm, respec-

tively, we evaluate V̂s(Rs) using the equation

V̂s(Rs) = (1− ε) · LB(Rs) + ε · UB(Rs)

where parameter ε indicates the ratio of the upper bound when estimating the value of state

(0 ≤ ε ≤ 1). If we set ε = 1 (ε = 0), the value is approximated using only the upper bound (lower

bound). Using this approximation, the production sequence can be identified using

R̂s = (R̂s−1, îs) = (̂i1, . . . , îs) where îs = argmin
i∈I

{V̂s(̂i1, . . . , îs−1, i)}

for s = 1, . . . , S and R̂0 = R0. Moreover, given a state, it is possible to consider only some

promising states among all possible next states so as to avoid wasting computational time on

evaluating prospectless states. The set of promising candidate states, denoted by CAND, is chosen

as those with a large LP fractional solution value. An integer parameter 1 ≤ λ ≤ I is used to

16

indicate the number of states to be evaluated. By setting λ = I, every possible future state is

evaluated. If λ = 1, only one future state, which is to say, that with the largest LP fractional

solution value, is evaluated. The overall ADP algorithm for an instance P is given in Algorithm

2. Starting from stage 1, at each stage, the algorithm fixes the state with the best approximated

value until it reaches the last stage and returns the solution yADP and its objective value UBADP .

While executing the algorithm, UBADP is updated whenever a better solution is obtained. In this

algorithm, a subroutine getCand(yLP , λ, s), which selects candidate states to be evaluated at stage

s, is used. From the fractional solution yLP , this subroutine compares the yLPis values for i ∈ I
and returns a set of indices of λ largest fractional values: CAND(s) = {(i1, s), . . . , (iλ, s)}.

5. Computational Experiments

We conduct two computational experiments. The first aims to investigate the performance

of the presented GLSP-based models and test the solution algorithms using a set of instances

similar to a specific real-world manufacturing environment. In the second experiment, the time-

flow model and the solution algorithm are further compared with a recent big bucket model using

a set of instances from the literature.

5.1. Comparison of GLSP-based Models

5.1.1. Test Instances

The first set of instances is generated considering the characteristics of the manufacturing

environment introduced in Lee & Lee (2020). In this manufacturing process, the setup takes a

significant amount of time, and thus, it should not occur frequently in each macroperiod. In

this regard, we set |St| = 3 for all t ∈ T . The length of each macroperiod is set to 100 (i.e.,

Kt = K = 100), and the unit production time ai is set to 1 for all instances. The dimension of an

instance is defined by the number of items (I) and the number of macroperiods (T). We use five

dimensions: (5, 10), (5, 15), (10, 10), (10, 15), and (15, 15).

In order to generate demand data similar to the demand patterns of this manufacturing envi-

ronment, we use two parameters ρ and f , which denote the production capacity utilization level and

the demand frequency, respectively. Specifically, ρ =
∑

i∈I,t∈T dit
K·T and f =

∑
i∈I,t∈T I{dit>0}

I·T where

I{dit>0} = 1 if nonzero demand occurs for item i in macroperiod t. From these parameters, the

average amount of nonzero demand can be determined; that is, davg = K·ρ
I·f . Among the elements

of the set I × T , we randomly choose f · I · T demand points while ensuring that at least one item

has nonzero demand in the last macroperiod and that there is no item with zero demand during

the entire planning horizon. For each selected demand point, the amount of demand is generated

from a discrete uniform distribution [0.8 · davg, 1.2 · davg]. We use the parameters ρ ∈ {0.8, 1},
f ∈ {1/3, 1/2}.

To determine the influence of the length of the setup times, we use three different classes: S, M ,

and L, whose (stmin, stmax) are (0.05, 0.15), (0.1, 0.3), and (0.4, 0.6), respectively. Then, the setup

17

times are generated from a discrete uniform distribution DU [stmin ·K, stmax ·K]. The inventory

holding cost hcit is set to 1, whereas the backlogging cost bcit is generated from DU [1, 5]. The

setup costs are set to be the same as the setup times; that is, scijt = stij .

There are 5×3×4 = 60 different combinations of factors, and we generate five instances for each

combination, such that 300 instances are presented in total. The experimental results are averaged

over these five instances of a particular combination. All of our experiments were conducted on

an Intel Core 3.10 GHz PC with 16 GB RAM under Windows 10 Pro. The proposed algorithms

were implemented in C++. FICO Xpress 8.9 with its default parameter settings was used as the

LP/MIP solver. We set the time limit for solving an MIP problem to 600 s.

5.1.2. LP Bound

The results of the tightness of the LP bound (LPB) are presented in Table 2. They are summa-

rized for each factor, as indicated in the first column. The LP gap is computed as (MIP Best Sol)−(LPB)
MIP Best Sol ×

100%, where MIP Best Sol is the best solution among those obtained by solving the four models

using the MIP solver. The column Gap Closed for each model represents the ratio of the closed

gap with respect to the LPB of ST; that is, (LPB of the model)−(LPB of ST)
(MIP Best Sol)−(LPB of ST) × 100%.

As shown in Table 2, the FL reformulation has a significant impact on tightening the LPB for

both (ST) and (TF). The average LP gap of the models with the FL reformulation is about 65%,

whereas that of the models without the FL reformulation is above 80%. From these results, we can

see that, similarly to other LSP models, our models can benefit significantly from FL reformulation.

In addition, there is an obvious improvement in LPB if (TF) is used instead of (ST). The LP gap

Table 2: Comparison of the LP bound of the models

Factors
LP Gap (%) Gap Closed (%)

ST TF ST-FL TF-FL TF ST-FL TF-FL

Dim
5× 10 74.6 63.1 70.6 62.2 16.6 5.2 17.7
5× 15 73.2 62.4 69.4 61.7 16.2 5.0 17.0

10× 10 91.6 84.4 65.9 63.8 8.0 27.9 30.3
10× 15 92.1 85.3 70.0 67.9 7.6 23.7 26.1
15× 15 97.2 93.2 65.4 63.9 4.1 32.7 34.2

Setup Time
S 77.4 70.3 51.1 47.3 11.0 29.0 35.7
M 86.1 77.9 69.8 65.2 10.7 17.4 23.8
L 93.7 84.8 83.9 79.1 9.8 10.2 15.6

Demand
(0.8, 1/3) 85.8 77.7 67.7 63.3 10.2 19.7 25.6
(0.8, 1/2) 95.2 90.8 67.0 65.7 4.9 29.0 30.4
(1, 1/3) 76.8 64.9 68.2 60.7 17.3 10.0 22.0
(1, 1/2) 85.2 77.4 70.1 65.9 9.7 16.8 22.1

Total 85.7 77.7 68.3 63.9 10.5 18.9 25.1

18

is reduced by approximately 8% on average. This also holds between (ST-FL) and (TF-FL). The

LPB provided by (TF-FL) is tighter than that by (ST-FL). In summary, (TF-FL) is the tightest

model, and approximately 25% of the gap is closed compared to (ST). The following relationship

is shown between the tightness of the models: (TF-FL) > (ST-FL) > (TF) > (ST).

5.1.3. Computational Performance with MIP Solver

Now, we compare the solution quality and computational burden when the MIP solver is used.

The results are listed in Table 3. Column Gap shows the final gap between the best solution and

the best lower bound found by the solver within the time limit; for example, a zero gap indicates

that the optimal solution is found. The ratio of the instances that found the optimal solution

among all corresponding instances is represented in column Opt. The next columns #Node and

Time represent the average number of nodes visited while running the branch-and-bound algorithm

and the average computation time, respectively.

The main observation is that (TF) and (TF-FL) are more successful in solving problem instances

than are (ST) and (ST-FL). The average gap of (ST) and (ST-FL) is approximately 35%, whereas

that of (TF) and (TF-FL) is approximately 27%. Meanwhile, even if the FL reformulation is effective

in reducing the LP gap, it does not seem to help much in improving the MIP solvability. With the

reformulation, the final gap increases, and the number of optimal solutions found diminishes. This

is due to the fact that the disadvantage of the increased model size is greater than the gain from

the tighter LP bound. In conclusion, (TF) shows the best performance.

The number of nodes visited by (TF) and (TF-FL) to close the gap is much smaller than those

by (ST) and (ST-FL). Furthermore, they require less computation time. In summary, the proposed

idea of the time-flow model seems quite useful. For the largest instances of dimensions (15, 15),

however, the performance is not satisfactory, because the average gap is above 50%. Therefore, we

applied our solution approaches to those instances.

5.1.4. Performance of LPNF Algorithm

We first test the performance of the standalone LPNF algorithm. Specifically, we investigate

the effects of the tightness of the base model and the different parameter settings. We compare

the different parameters γup ∈ {0.7, 0.9} and δ ∈ {1, 2, 3, 4, 5}, while γdown is fixed to zero. Table

4 presents the relative solution values and computation times where the relative solution value is

defined as LPNF solution value
MIP Best Sol × 100%.

As shown in Table 4, there are significant differences in the algorithms’ performance with the

different models. The quality of the solution obtained using (TF-FL) is much better than that

obtained using the others. The average deviation from the MIP Best Sol is approximately 257%

with (ST), whereas it is about only 24% with (TF-FL). These results show that the tightness of

the base model greatly affects the solution quality, which is natural, as the algorithm is highly

dependent on the quality of the LP bound. Among all of the models, (TF-FL), the tightest,

19

T
a
b
le

3
:
C
o
m
p
a
ri
so
n
o
f
th
e
co
m
p
u
ta
ti
o
n
a
l
p
er
fo
rm

a
n
ce

o
f
th
e
m
o
d
el
s

F
a
ct
o
rs

G
a
p
(%

)
O
p
t
(%

)
#

N
od

e
T
im

e
(s
)

S
T

T
F

S
T
-
F
L

T
F
-
F
L

S
T

T
F

S
T
-
F
L

T
F
-
F
L

S
T

T
F

S
T
-
F
L

T
F
-
F
L

S
T

T
F

S
T
-
F
L

T
F
-
F
L

D
im

5
×

1
0

1
.0

0
.1

2
.4

0
.0

9
6
.7

9
8
.3

8
3
.3

1
0
0
.0

3
0
6
3
0
1

9
6
0
9

1
2
3
9
2
4

7
8
9
9

1
0
3
.7

3
7
.0

1
7
9
.2

5
9
.6

5
×

1
5

1
8
.8

4
.4

2
3
.7

8
.1

3
5
.0

7
1
.7

2
8
.3

5
6
.7

8
1
4
8
9
0

5
0
2
8
6

1
5
0
2
4
3

2
2
3
9
0

4
5
0
.4

3
0
5
.1

5
0
4
.3

3
9
1
.4

1
0
×

1
0

3
1
.5

2
5
.5

3
5
.7

3
5
.6

1
1
.7

1
8
.3

1
0
.0

5
.0

2
0
9
6
4
4

5
5
6
2

6
7
4
2
7

2
4
5
6

5
5
5
.2

5
3
9
.0

5
6
3
.7

5
7
9
.0

1
0
×

1
5

5
0
.9

4
0
.5

5
7
.4

4
9
.9

3
.3

6
.7

1
.7

1
.7

1
1
3
8
8
1

2
1
8
6

1
2
3
3
0

7
0
8

5
8
9
.4

5
7
2
.3

5
9
3
.9

5
9
8
.2

1
5
×

1
5

6
1
.1

5
3
.6

6
4
.4

5
8
.9

0
.0

0
.0

0
.0

0
.0

1
9
4
6
1

3
7

2
4
8
0

5
6
0
0
.0

6
0
0
.0

6
0
0
.0

6
0
0
.0

S
et
u
p
T
im

e S
1
8
.4

1
1
.4

2
1
.1

1
7
.2

4
1
.0

5
4
.0

3
9
.0

2
8
.0

2
1
2
2
5
5

8
1
4
1

5
2
7
1
6

5
5
4
9

3
9
6
.3

3
4
0
.6

4
2
0
.1

4
1
1
.1

M
3
5
.3

2
5
.4

3
9
.8

3
1
.5

2
4
.0

3
2
.0

1
8
.0

2
1
.0

3
2
7
0
4
6

1
6
1
8
6

8
1
5
7
3

7
3
2
1

4
8
3
.9

4
4
0
.5

5
1
0
.6

4
6
4
.7

L
4
4
.3

3
7
.7

4
9
.3

4
2
.8

2
3
.0

3
1
.0

1
7
.0

2
9
.0

3
3
9
2
0
4

1
6
2
8
1

7
9
5
5
3

7
2
0
4

4
9
8
.9

4
5
0
.9

5
3
3
.9

4
6
1
.2

D
em

a
n
d

(0
.8
,1
/3
)

3
0
.2

2
1
.0

3
2
.4

2
7
.4

3
6
.0

4
6
.7

3
3
.3

2
6
.7

2
5
7
5
6
1

9
6
3
6

7
2
4
5
3

6
0
3
7

4
2
3
.6

3
6
8
.5

4
4
6
.3

4
1
8
.2

(0
.8
,1
/2
)

3
3
.8

2
4
.6

3
6
.4

2
9
.9

2
8
.0

3
8
.7

2
1
.3

5
2
.0

2
9
8
1
9
9

1
7
2
5
8

6
9
2
4
6

7
0
7
8

4
7
5
.1

4
2
9
.7

5
1
0
.3

4
7
6
.1

(1
,1
/3
)

3
0
.4

2
4
.8

3
6
.3

2
9
.6

2
9
.3

3
8
.7

2
6
.7

3
8
.7

2
7
1
7
3
6

9
6
0
5

7
7
4
8
2

5
8
1
4

4
4
4
.9

4
0
2
.1

4
7
8
.3

4
1
3
.9

(1
,1
/2
)

3
6
.3

2
8
.9

4
1
.8

3
5
.1

2
4
.0

3
2
.0

1
7
.3

4
0
.0

3
4
3
8
4
5

1
7
6
4
5

6
5
9
4
2

7
8
3
6

4
9
5
.2

4
4
2
.5

5
1
8
.0

4
7
4
.4

T
o
ta
l

3
2
.7

2
4
.8

3
6
.7

3
0
.5

2
9
.3

3
9
.0

2
4
.7

3
2
.7

2
9
2
8
3
5

1
3
5
3
6

7
1
2
8
1

6
6
9
1

4
5
9
.7

4
1
0
.7

4
8
8
.2

4
4
5
.6

20

Table 4: Test results for the LPNF algorithm

γup δ
Relative Solution Value (%) Time (s)

ST TF ST-FL TF-FL ST TF ST-FL TF-FL

0.7

1 263.0 178.3 120.3 106.5 3.5 6.9 3.9 6.8

2 276.6 175.5 138.7 116.6 2.5 4.8 2.6 4.7

3 496.2 179.7 245.2 126.7 2.4 3.9 2.1 4.0

4 423.7 182.7 201.4 132.8 1.9 3.3 1.8 3.4

5 330.9 189.8 202.8 133.8 1.7 3.0 1.6 3.1

0.9

1 253.2 170.2 123.1 107.2 3.6 6.9 3.8 6.7

2 280.3 174.4 140.1 116.1 2.5 4.7 2.6 4.7

3 488.5 180.6 240.6 129.9 2.5 3.8 2.1 3.9

4 432.3 185.6 200.9 133.7 2.5 3.3 1.8 3.4

5 328.4 186.9 201.4 133.0 2.8 2.9 1.6 3.1

Average 357.3 180.4 181.5 123.6 2.6 4.4 2.4 4.4

shows the best solution quality. The computation time for (TF-FL) is approximately twice that of

(ST-FL), but is short enough to be used for the ADP algorithm. The parameter γup does not affect

either the solution quality or time. The larger δ leads to shorter computation time at the expense

of slightly deteriorated solution quality, because more variables can be fixed in each iteration.

5.1.5. Performance of ADP Algorithm

For the ADP algorithm, we fix the threshold parameters (γdown, γup) to (0, 0.9) and use TF-FL as

the base model, which shows good performance with the LPNF algorithm. We use fixing parameters

δ ∈ {1, 3, 5}, candidates parameters λ ∈ {2, 3, 5}, and weighting parameters ε ∈ {0, 0.2, 0.5, 0.8, 1}.
Note that when ε = 0, the parameter δ has no meaning because the LPNF algorithm is not used.

Table 5 reports the relative solution values, the ratio of instances whose ADP solution is better

than the MIP Best Sol , and the computation time. The relative solution values and computation

time are also illustrated in Figures 3 and 4, respectively. In Figure 4, the computation time for the

ADP algorithms with ε greater than zero are averaged and grouped together because there are no

meaningful differences between them.

Overall, the performance of the ADP algorithm seems satisfactory. As shown in Table 5, the

largest average deviation from MIP Best Sol is only about 4% when the LP bound is not used

(ε = 1). When both the LP bound and the LPNF algorithm are used, the ADP algorithms

succeed in finding even better solutions under most of the parameter settings. For instance, when

(λ, δ, ε) = (5, 1, 0.2) is used, the solution quality improves by more than 10% compared with MIP

Best Sol . Under this setting, the ADP algorithm obtains better solutions for 90% of the instances.

Regarding the parameters, δ = 1 and ε = 0.2 show, as indicated in Figure 3, the best results

with respect to the relative solution value. Smaller δ leads to better solutions at the expense of

increased computation times. The average computation time is also proportional to the value of

21

Table 5: Test results for the ADP algorithm

λ δ ε
Relative

Solution Value (%)
Better

Solution (%) Time (s)

2

- 0 93.54 80.00 66.5

1

0.2 92.46 81.67 263.6
0.5 94.81 76.67 259.4
0.8 95.78 76.67 251.1
1 95.84 75.00 272.0

3

0.2 96.28 66.67 174.8
0.5 98.94 61.67 170.1
0.8 99.03 61.67 164.8
1 99.38 56.67 183.6

5

0.2 98.01 65.00 152.6
0.5 101.08 55.00 163.2
0.8 101.97 50.00 142.1
1 102.45 48.33 170.7

Average 97.66 65.77 187.3

3

- 0 91.65 83.33 99.8

1

0.2 90.59 85.00 420.1
0.5 95.17 75.00 384.2
0.8 96.05 70.00 366.3
1 96.09 70.00 407.4

3

0.2 96.89 66.67 260.5
0.5 100.15 56.67 249.1
0.8 101.12 55.00 236.1
1 101.50 55.00 270.1

5

0.2 96.92 63.33 224.3
0.5 100.92 60.00 237.1
0.8 103.43 40.00 206.4
1 103.68 48.33 252.2

Average 98.01 64.49 278.0

5

- 0 89.82 91.67 158.2

1

0.2 88.98 90.00 555.0
0.5 94.72 71.67 569.3
0.8 95.59 71.67 549.6
1 96.20 70.00 590.8

3

0.2 95.68 70.00 431.2
0.5 100.79 60.00 407.6
0.8 101.86 55.00 371.4
1 101.86 55.00 474.2

5

0.2 97.86 63.33 373.8
0.5 102.62 55.00 373.1
0.8 103.48 53.33 318.0
1 103.93 51.67 412.3

Average 97.95 66.03 429.6

22

85

90

95

100

105

R
el
a
ti
ve

so
lu
ti
o
n
va
lu
e
(%

)

- 1 3 5 - 1 3 5 - 1 3 5

λ = 2 λ = 3 λ = 5

δ =

ε = 0 ε = 0.2 ε = 0.5

ε = 0.8 ε = 1

Figure 3: Test results for the ADP algorithm: Solution quality

- 1 3 5 - 1 3 5 - 1 3 5

0

200

400

600

λ = 2 λ = 3 λ = 5

δ =

C
o
m
p
u
ta
ti
o
n
T
im

e
(s
)

Figure 4: Test results for the ADP algorithm: Computation time

23

λ. Moreover, we observe that a larger λ does not always lead to better solution quality. For ε

values with relatively good performance, a larger λ value helps improve the solution quality. On

the contrary, for ε values with poor performance, evaluating additional states makes it even poorer.

5.2. Comparison with Big Bucket Model

In our second experiment, we further investigate the performance of the (TF) and ADP al-

gorithm relative to a big bucket model recently proposed by Mahdieh et al. (2018). This model,

denoted as (MCB), uses a multi-commodity flow formulation to capture the sequence of production

within each bucket. As far as we know, (MCB) is the latest LSP model that can incorporate the

sequence-dependent setup, setup crossover, and setup carryover. Note that the models presented

in Guimarães et al. (2014) cannot incorporate them all simultaneously. Moreover, (MCB) is an

improved version of the models previously presented in Menezes et al. (2011) and Clark et al.

(2014).

For the comparison, we create a set of instances according to the instance generation scheme

in Almada-Lobo et al. (2007), which is frequently used in the literature (e.g. James & Almada-

Lobo, 2011; Guimarães et al., 2014). The instance type is defined by the combination of problem

dimensions (I × T), capacity utilization (Cut), and setup cost factor (θ). See Almada-Lobo et al.

(2007) for further details. We additionally introduce one more parameter to control the average

length of the setup time (Setup Time), as in the instances of the first experiment. We use the

Table 6: Comparison of the models and the solution algorithms

Factors
Relative Solution Value (%) Time (s)

TF MCB ADPLU ADPL LPNF TF/MCB ADPLU ADPL LPNF

Dim
10× 10 100.0 96.61 101.88 105.26 112.15 1800 120.8 24.6 2.1
10× 15 100.0 98.40 98.57 103.00 109.60 1800 403.8 92.3 6.7
15× 10 100.0 96.34 95.94 97.44 105.52 1800 256.0 72.5 4.8
15× 15 100.0 98.04 91.43 91.92 100.29 1800 537.7 242.0 14.2

Cut
0.6 100.0 95.78 96.43 99.24 109.63 1800 337.4 97.5 6.4
0.8 100.0 97.68 96.28 98.91 105.67 1800 332.4 113.1 7.0
1 100.0 98.59 98.14 100.07 105.37 1800 318.9 113.0 7.4

θ
50 100.0 97.24 96.40 98.49 106.73 1800 333.4 112.4 7.1

100 100.0 97.45 97.51 100.32 107.05 1800 325.7 103.4 6.8

Setup Time
S 100.0 91.82 93.60 97.60 104.64 1800 658.7 227.3 13.6
M 100.0 98.40 98.15 99.89 107.34 1800 247.4 69.3 5.0
L 100.0 101.83 99.11 100.74 108.69 1800 82.6 27.0 2.3

Total 100.0 97.35 96.95 99.41 106.89 1800 329.6 107.9 7.0

24

following parameters: I ∈ {10, 15}, T ∈ {10, 15}, Cut ∈ {0.6, 0.8, 1}, θ ∈ {50, 100}, and Setup

Time ∈ {S,M,L}. The (stmin, stmax) of classes S, M , and L are (0.2, 0.4), (0.4, 0.6), and (0.6, 0.8),

respectively. For each combination, we generate five instances, resulting in a total of 360 instances.

For these instances, we set the time limit for solving an MIP problem to 1800 s, and for the ADP

algorithm, 900 s.

We compare the results obtained by solving (TF) and (MCB) with the MIP solver and those

obtained by our ADP and LPNF algorithms. For the algorithms, we use (TF-FL) as a base model

and set (γdown, γup, δ, λ) = (0, 0.9, 3, 3). The corresponding results are presented in Table 6. We let

the solution values of (TF) as 100 and indicate the relative solution quality of other approaches.

The subscript of the ADP algorithm indicates the types of bounds used; that is, ADPLU uses both

the lower and upper bounds (using ε = 0.2), while ADPL uses only the lower bound (ε = 0).

In the comparison of the two models, (TF) performs worse than (MCB) on average, though it is

better in some instances. This can be explained by the fact that, due to the microperiods, the size

of (TF) is larger than that of (MCB), which makes it harder to solve. The performance of (TF) gets

better as the setup time increases, which appears to be because the maximum number of items

that can be produced within a macroperiod decreases, resulting in fewer microperiods. This result

indicates that (TF) can be beneficial when the number of setups that can be conducted within a

macroperiod is limited. Although (MCB) shows relatively better performance than (TF), it is not

successful in solving instances within the time limit.

The solution provided by ADPLU is 3% better than that of (TF) on average. Moreover, it is even

better than the solution of (MCB), though the difference is quite small. Similar to the results of

the first experiment, ADPLU performs better than ADPL with longer computation time. Notably, the

relative performance of both ADPLU and ADPL gets better as the size of instances increases. This

indicates that the ADP algorithms can be more beneficial for larger instances. The computation

time required for the ADP algorithms is much shorter than 1800 s.

However, the performance of the ADP algorithms relies on the choice of the parameters. Es-

pecially, in contrast to other parameters whose effects are quite predictable, choosing the value of

weighting parameter ε may require several trials. In spite of the additional effort for choosing ap-

propriate parameters, considering its advantages in terms of computation time, the ADP algorithm

can be one viable option in solving LSPs with sequence-dependent setups.

6. Conclusion

In this paper, we introduce new integer optimization models for the LSP with sequence-

dependent setups that can consider setup crossover and carryover. It is shown that the newly

proposed time-flow models (TF) and (TF-FL) have certain benefits compared with the standard

GLSP-based models in terms of the tightness of the LP bound and solvability with the MIP solver.

Moreover, it is demonstrated that the tightness of the model not only affects the solvability with

25

the MIP solver, but also has a significant impact on the performance of the proposed algorithm. In

the first experiment, our ADP algorithm shows some benefits over the MIP solver; that is, it can

find a better solution within a shorter computation time. In addition, in the second experiment, the

ADP algorithms show competitive performance in comparison with a state-of-the-art big bucket

model in the literature.

The results of this study can be extended to big bucket models that consider sequence-dependent

setups. When the setup occurs in a sequence-dependent manner, the big bucket models should con-

sider the sequence of production lots within each bucket. This has been done by using cutset-type

subtour elimination constraints, Miller-Tucker-Zemlin formulations, or single/multi-commodity-

flow-based formulations (see Guimarães et al., 2014). In addition to these approaches, our time-

flow model can also be used to present the production sequences within each bucket. Comparing

the performances of these various methods seems to be an interesting future research direction.

In addition, a family of valid inequalities similar to the proposed ones can be derived for the big

bucket models. These inequalities can be used as cutting planes in a branch-and-cut algorithm,

which represents another possible extension.

As another future research direction, there are some possible improvements to the proposed

ADP algorithm. For instance, different schemes could be used to obtain primal and dual bound

values instead of the LPNF algorithm and LP relaxation, respectively. In fact, even whether it is a

valid bound or not is unimportant when approximating the values. It is sufficient if the true value

can be approximated appropriately. Further, one can newly define the state in each stage, such

as the inventory position of the items or the cumulative production amounts. With these states,

the value function can be approximated using various techniques such as piecewise linear function

fitting, regression, or machine-learning-based techniques.

Finally, the algorithm can be extended for application to cases in which uncertainty is present

in data (e.g., demand or setup time). In such cases, the expected value of each state should be

approximated, which can be achieved by various methods such as sampling or scenario grouping.

This is another interesting direction for future research.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by

the Korean government (No. 2021R1A2C2005531). The authors would like to thank the Institute

for Industrial Systems Innovation of Seoul National University for the administrative support. We

also are grateful to the editor and three anonymous referees, whose comments and suggestions

enabled us to improve the paper significantly.

26

References

References

Alem, D., Curcio, E., Amorim, P., & Almada-Lobo, B. (2018). A computational study of the general lot-sizing

and scheduling model under demand uncertainty via robust and stochastic approaches. Computers & Operations

Research, 90 , 125–141.

Alfieri, A., Brandimarte, P., & D’Orazio, S. (2002). LP-based heuristics for the capacitated lot-sizing problem:

The interaction of model formulation and solution algorithm. International Journal of Production Research, 40 ,

441–458.

Alipour, Z., Jolai, F., Monabbati, E., & Zaerpour, N. (2020). General lot-sizing and scheduling for perishable food

products. RAIRO - Operations Research, 54 , 913–931.

Almada-Lobo, B., Clark, A., Guimarães, L., Figueira, G., & Amorim, P. (2015). Industrial insights into lot sizing

and scheduling modeling. Pesquisa Operacional , 35 , 439–464.

Almada-Lobo, B., Klabjan, D., Antónia Carravilla, M., & Oliveira, J. F. (2007). Single machine multi-product

capacitated lot sizing with sequence-dependent setups. International Journal of Production Research, 45 , 4873–

4894.

Almeder, C., & Almada-Lobo, B. (2011). Synchronisation of scarce resources for a parallel machine lotsizing problem.

International Journal of Production Research, 49 , 7315–7335.

Belo-Filho, M. A. F., Toledo, F. M. B., & Almada-Lobo, B. (2014). Models for capacitated lot-sizing problem with

backlogging, setup carryover and crossover. Journal of the Operational Research Society , 65 , 1735–1747.

Bertsimas, D., & Demir, R. (2002). An approximate dynamic programming approach to multidimensional knapsack

problems. Management Science, 48 , 550–565.

Büyüktahtakın, İ. E., & Liu, N. (2016). Dynamic programming approximation algorithms for the capacitated lot-

sizing problem. Journal of Global Optimization, 65 , 231–259.

Camargo, V. C. B., Toledo, F. M. B., & Almada-Lobo, B. (2012). Three time-based scale formulations for the two-

stage lot sizing and scheduling in process industries. Journal of the Operational Research Society , 63 , 1613–1630.

Carvalho, D. M., & Nascimento, M. C. (2021). Hybrid matheuristics to solve the integrated lot sizing and scheduling

problem on parallel machines with sequence-dependent and non-triangular setup. European Journal of Operational

Research, .

Clark, A., Mahdieh, M., & Rangel, S. (2014). Production lot sizing and scheduling with non-triangular sequence-

dependent setup times. International Journal of Production Research, 52 , 2490–2503.

Copil, K., Wörbelauer, M., Meyr, H., & Tempelmeier, H. (2017). Simultaneous lotsizing and scheduling problems: a

classification and review of models. OR Spectrum, 39 , 1–64.

Federgruen, A., & Tzur, M. (1991). A simple forward algorithm to solve general dynamic lot sizing models with n

periods in o(n log n) or o(n) time. Management Science, 37 , 909–925.

Fiorotto, D. J., Huaccha Neyra, J. d. C., & de Araujo, S. A. (2020). Impact analysis of setup carryover and crossover

on lot sizing problems. International Journal of Production Research, 58 , 6350–6369.

Fiorotto, D. J., Jans, R., & de Araujo, S. A. (2017). An analysis of formulations for the capacitated lot sizing problem

with setup crossover. Computers & Industrial Engineering , 106 , 338–350.

Fleischmann, B., & Meyr, H. (1997). The general lotsizing and scheduling problem. OR Spectrum, 19 , 11–21.

Guimarães, L., Klabjan, D., & Almada-Lobo, B. (2014). Modeling lotsizing and scheduling problems with sequence

dependent setups. European Journal of Operational Research, 239 , 644–662.

James, R. J., & Almada-Lobo, B. (2011). Single and parallel machine capacitated lotsizing and scheduling: New

iterative mip-based neighborhood search heuristics. Computers & Operations Research, 38 , 1816–1825.

Koçlar, A., & Süral, H. (2005). A note on “The general lot sizing and scheduling problem”. OR Spectrum, 27 ,

145–146.

27

Krarup, J., & Bilde, O. (1977). Plant location, set covering and economic lot size: An O(mn)-algorithm for structured

problems. In Numerische Methoden bei Optimierungsaufgaben Band 3 .

Lee, Y., & Lee, K. (2020). Lot-sizing and scheduling in flat-panel display manufacturing process. Omega, 93 , 102036.

Maes, J., McClain, J. O., & Van Wassenhove, L. N. (1991). Multilevel capacitated lotsizing complexity and LP-based

heuristics. European Journal of Operational Research, 53 , 131–148.

Mahdieh, M., Clark, A., & Bijari, M. (2018). A novel flexible model for lot sizing and scheduling with non-triangular,

period overlapping and carryover setups in different machine configurations. Flexible Services and Manufacturing

Journal , 30 , 884–923.

Melega, G. M., de Araujo, S. A., & Morabito, R. (2020). Mathematical model and solution approaches for integrated

lot-sizing, scheduling and cutting stock problems. Annals of Operations Research, 295 , 695–736.

Menezes, A. A., Clark, A., & Almada-Lobo, B. (2011). Capacitated lot-sizing and scheduling with sequence-

dependent, period-overlapping and non-triangular setups. Journal of Scheduling , 14 , 209–219.

Meyr, H. (2000). Simultaneous lotsizing and scheduling by combining local search with dual reoptimization. European

Journal of Operational Research, 120 , 311–326.

Meyr, H. (2002). Simultaneous lotsizing and scheduling on parallel machines. European Journal of Operational

Research, 139 , 277–292.

Meyr, H., & Mann, M. (2013). A decomposition approach for the general lotsizing and scheduling problem for parallel

production lines. European Journal of Operational Research, 229 , 718–731.

Mohan, S., Gopalakrishnan, M., Marathe, R., & Rajan, A. (2012). A note on modelling the capacitated lot-sizing

problem with set-up carryover and set-up splitting. International Journal of Production Research, 50 , 5538–5543.

Pochet, Y., & Wolsey, L. A. (2006). Production planning by mixed integer programming . Springer Science & Business

Media.

Powell, W. B. (2007). Approximate dynamic programming: Solving the curses of dimensionality . John Wiley & Sons.

Powell, W. B. (2016). Perspectives of approximate dynamic programming. Annals of Operations Research, 241 ,

319–356.

Suerie, C. (2006). Modeling of period overlapping setup times. European Journal of Operational Research, 174 ,

874–886.

Suerie, C., & Stadtler, H. (2003). The capacitated lot-sizing problem with linked lot sizes. Management Science, 49 ,

1039–1054.

Sung, C., & Maravelias, C. T. (2008). A mixed-integer programming formulation for the general capacitated lot-sizing

problem. Computers & Chemical Engineering , 32 , 244–259.

Wagner, H. M., & Whitin, T. M. (1958). Dynamic version of the economic lot size model. Management Science, 5 ,

89–96.

Wolsey, L. A. (1997). MIP modelling of changeovers in production planning and scheduling problems. European

Journal of Operational Research, 99 , 154–165.

Appendix A. Proof of Proposition 3.2

For a given X ∈ X , by summing the constraints (2c) over all (i, s) ∈ X and eliminating the

common terms of both sides, we obtain

∑
(i,s)∈X

(
aixis + ris +

∑
j∈I

stjizjis

)
=

∑
(i,k,s+1)∈δ+(X)

wiks+1 −
∑

(j,i,s)∈δ−(X)

wjis.

From the bound constraints (2h) and bound values (3), we have

28

∑
(i,s)∈X

(
aixis +

∑
j∈I

stjizjis

)
≤

∑
(i,k,s+1)∈δ+(X)

Uiks+1ziks+1 −
∑

(j,i,s)∈δ−(X)

Ljiszjis

=
∑

(i,k,s+1)∈δ+(X):

s+1=fT (s+1)

startT (s+1)ziks+1 +
∑

(i,k,s+1)∈δ+(X):

s+1 �=fT (s+1)

(endT (s+1) − stik)ziks+1

−
∑

(j,i,s)∈δ−(X):

s=fT (s)

(startT (s) − stji)zjis −
∑

(j,i,s)∈δ−(X):

s �=fT (s)

startT (s)zjis.

As startT (s+1) = endT (s) when s+1 = fT (s+1) and endT (s+1) = endT (s) when s+1 �= fT (s+1), the

right-hand side term is equal to

∑
(i,k,s+1)∈δ+(X)

endT (s)ziks+1 −
∑

(j,i,s)∈δ−(X)

startT (s)zjis −
∑

(i,k,s+1)∈δ+(X):

s+1 �=fT (s+1)

stikziks+1 +
∑

(j,i,s)∈δ−(X):

s=fT (s)

stjizjis.

After the rearrangement of the terms, the inequalities (4) can be derived. In addition, when X

is restricted to a subset of Xt, T (s) = t. Moreover,
∑

(i,k,s+1)∈δ+(X) ziks+1 =
∑

(j,i,s)∈δ−(X) zjis.

Therefore, inequalities (5) can be obtained.

Appendix B. Facility Location Reformulation

The following additional variables and notations are introduced for the reformulations (ST-FL)

and (TF-FL). We define a dummy microperiod S+1 to represent the demand that is not satisfied.

Let T (S+1) = T +1 and S0 = S∪{S+1}. Then, we define variable αist as the fraction of demand

of item i in macroperiod t satisfied by the production in microperiod s. If s = S + 1, it represents

the fraction of demand of item i in macroperiod t that is not satisfied.
Regarding the cost, let Hist =

∑t−1
k=T (s) hcikdit when T (s) < t; otherwise, Hist = 0. Similarly,

let Bist =
∑T (s)−1

k=t bcikdit when T (s) > t; otherwise, Bist = 0. The cost coefficient of αist is defined
as Cist := Hist +Bist + pciT (s)dit. The (ST-FL) is as follows:

minimize
∑
i∈I

∑
t∈T

(∑
s∈S0

Cistαist +
∑
j∈I

∑
s∈St

scijtzijs
)

(B.1a)

subject to
∑
s∈S0

αist = 1 ∀i ∈ I, t ∈ T (B.1b)

∑
i∈I

∑
s∈St

(∑
l∈T

aidilαisl +
∑
j∈I

stijzijs
)
≤ Kt +

∑
i∈I

∑
j∈I

(vijt − vijt+1) ∀t ∈ T (B.1c)

αist ≤ yis ∀i ∈ I, s ∈ S, t ∈ T (B.1d)
∑
t∈T

aiditαist ≤ KT (s)yis ∀i ∈ I, s ∈ S (B.1e)

∑
i∈I

yi1 = 1 (B.1f)

yis =
∑
j∈I

zjis ∀i ∈ I, s ∈ S \ {1} (B.1g)

29

yis =
∑
j∈I

zijs+1 ∀i ∈ I, s ∈ S \ {S} (B.1h)

vijt ≤ stijqijt ∀i, j ∈ I, t ∈ T (B.1i)

qijt ≤ zijft ∀i, j ∈ I, t ∈ T (B.1j)

αist, yis, vijt ≥ 0 ∀i, j ∈ I, t ∈ T , s ∈ S0 (B.1k)

qijt, zijs ∈ {0, 1} ∀i, j ∈ I, t ∈ T , s ∈ S (B.1l)

The objective function (B.1a) is the total cost. Constraints (B.1b) are the demand constraints.

Constraints (B.1c) are the capacity constraints. Constraints (B.1d) indicate that an item can be

produced only if the corresponding setup occurs. Constraints (B.1e) represent the upper bound

constraints for the amount of an item produced in a microperiod. Constraints (B.1f)–(B.1l) are

defined in the same manner as (1e)–(1k) of (ST), except for the domains of variable α. Similarly,

the (TF-FL) is as follows:

minimize
∑
i∈I

∑
t∈T

(∑
s∈S0

Cistαist +
∑
j∈I

∑
s∈St

scijtzijs
)

(B.2a)

subject to
∑
s∈S0

αist = 1 ∀i ∈ I, t ∈ T (B.2b)

∑
j∈I

(wjis + stjizjis) +
∑
l∈T

aidilαisl + ris =
∑
k∈I

wiks+1 ∀i ∈ I, s ∈ S (B.2c)

αist ≤ yis ∀i ∈ I, s ∈ S, t ∈ T (B.2d)

ris +
∑
t∈T

aiditαist ≤ KT (s)yis ∀i ∈ I, s ∈ S (B.2e)

∑
i∈I

yi1 = 1 (B.2f)

yis =
∑
j∈I

zjis ∀i ∈ I, s ∈ S \ {1} (B.2g)

yis =
∑
j∈I

zijs+1 ∀i ∈ I, s ∈ S \ {S} (B.2h)

Lijszijs ≤ wijs ≤ Uijszijs ∀i, j ∈ I, s ∈ S \ {1} (B.2i)

αist, yis, wijs ≥ 0 ∀i ∈ I, s ∈ S0, t ∈ T (B.2j)

zijs ∈ {0, 1} ∀i, j ∈ I, s ∈ S (B.2k)

The objective function (B.2a) and other constraints (B.2b) and (B.2d)–(B.2k) are defined in

the same manner as those for (ST-FL). Constraints (B.2c) are the same as the time flow balance

equations of (TF), except that variable xis is replaced with
∑

l∈T dilαisl.

30

