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Multistage Stochastic Optimization for Microgrid
Operation under Islanding Uncertainty

Jongheon Lee, Student Member, IEEE, Siyoung Lee, Member, IEEE, and Kyungsik Lee, Member, IEEE

Abstract—Microgrids can be distinguished from traditional
power systems based on their ability to perform the islanded
operation. This study explores the problem of optimizing the
microgrid operation in the context of uncertain islanding events.
This occurs when the microgrid is isolated from the main
grid and it operates as an independent system. A multistage
stochastic optimization model that considers multi-occurrence
and multi-period islanding events is proposed to optimize the
proactive policy. This is achieved by creating parameters for the
maximum number of time periods of the islanded operation in the
planning horizon. To solve the resulting large-scale mixed-integer
program, an efficient algorithm based on the two-stage Benders’
decomposition method is proposed. Numerical experiments show
that the proposed policy significantly reduces the expected
operation costs of a microgrid. This is more cost-effective in
comparison to the other reactive policies that prepare a certain
reserve level and reschedule the resources after an islanding event
occurs. This study demonstrates that the proposed decomposition
algorithm can efficiently solve large-scale problems that have
longer planning horizons or a larger number of time periods for
the islanded operation.

Index Terms—Benders’ decomposition algorithm, Islanding,
Microgrid, Multistage stochastic optimization, Proactive policy.

NOMENCLATURE

Sets and Indices:
H Set of time periods, t ∈ H = {1, . . . , T}
G Set of thermal generation units, g ∈ G
E Set of battery energy storage systems (BESSs), e ∈ E
S Set of islanding scenarios, s ∈ S
Parameters:
RUg Ramp-up limit of unit g
RDg Ramp-down limit of unit g
MUg Minimum up time of unit g
MDg Minimum down time of unit g
Pmax
g Maximum generation limit of unit g

Pmin
g Minimum generation limit of unit g
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Digital Object Identifier

Fg(·, ·) Generation cost function of unit g
PNt Total amount of renewable generation in period t
Emax

e Maximum storage level of BESS e
Emin

e Minimum storage level of BESS e
PCmax

e Maximum charging limit of BESS e
PDmax

e Maximum discharging limit of BESS e
σe Changing/Discharging efficiency rate of BESS e
ENe Maximum number of allowed charging/discharging

state changes for BESS e in the planning horizon

Ee0 Energy storage level of BESS e at the beginning of

the planning horizon

TEe Target energy storage level of BESS e at the end of

the planning horizon

Kt Value of lost load (VoLL) in time period t
Dt Load demand in time period t
Rt System reserve requirement in time period t
ρt Market price in time period t
Pmax
M Maximum transaction amount with main grid in time

period t
ps Probability of scenario s
τ Maximum number of time periods of islanded oper-

ation in the planning horizon

Decision Variables:
Isgt 1 if unit g is on in time period t for scenario s, 0

otherwise

ST s
gt 1 if unit g is starting up in time period t for scenario

s, 0 otherwise

SP s
gt 1 if unit g is shutting down in time period t for

scenario s, 0 otherwise

Us
et 1 if BESS e is discharging in time period t for

scenario s, 0 otherwise

V s
et 1 if BESS e is charging in time period t for scenario

s, 0 otherwise

UV s
et 1 if BESS e changes state at the beginning of time

period t for scenario s, 0 otherwise

P s
gt Amount of generation of unit g in time period t for

scenario s
LSs

t Amount of load shedding in time period t for scenario

s
Es

et Energy storage level of BESS e at the end of time

period t for scenario s
PCs

et Charging amount of BESS e in time period t for

scenario s
PDs

et Discharging amount of BESS e in time period t for

scenario s
PMs

t Transaction amount with the main grid in time period

t for scenario s
xs
c Concatenated vector of the binary variables for sce-
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nario s, (Isgt, ST
s
gt, SP

s
gt), ∀ g and t

xs
b Concatenated vector of the binary variables for sce-

nario s, (Us
et, V

s
et, UV s

et), ∀ e and t
xs
d Concatenated vector of the continuous variables for

scenario s, (Es
et, PCs

et, PDs
et), ∀ e and t, P s

gt, ∀ g
and t, and LSs

t , ∀ t
xs
m Concatenated vector of the continuous variables for

scenario s, PMs
t , ∀ t

I. INTRODUCTION

A microgrid is a self-operating system that consists of var-

ious distributed generators and loads with medium/low

voltage distribution phases [1]. Locally distributed microgrid

operators (MGOs) establish operation plans that determine

the amount of power transactions with the main transmission

system (main grid) as well as the amount of power produced

by the generators, based on the forecasted load demand for

the jurisdiction.

The ability of the islanded operation in microgrids is one

of the most important features that distinguishes them from

traditional power systems. The islanded operation, which

occurs when the microgrid is isolated from the main grid and it

operates as an independent system, can improve the reliability

of a microgrid. This can be achieved by preventing external

accidents from being transmitted inside. However, because a

microgrid typically has a limited generation capability and

it cannot receive electricity from the main grid during the

islanded operation, a reliable energy supply cannot be assured

unless the internal generators are properly prepared. There-

fore, the MGO must consider the possibility of the islanded

operation to enhance the reliability of the microgrid when

establishing an operation plan.

Presently, the literature for islanding events is limited and

there is little research in the context of operation planning.

Some studies [2]-[4], assume that the MGO operates a mi-

crogrid with a reactive policy that reschedules the resources

after an islanding event occurs with or without a prespecified

level of reserve capacity. Meanwhile, the reliability and cost-

effectiveness of a microgrid under the islanding uncertainty

may be further improved over reactive policies with a proactive
policy. This is a pre-planned baseline operation plan along

with the recourse actions for each possible islanding event

under consideration. There have been some studies that have

focused on the proactive policy [5]-[11]. Farzin et al. [5]

suggested an operation planning approach to minimize the

cost when the duration of the islanded operation is uncertain.

Khodaei [6] proposed a T − τ criterion under which each

possible islanding scenario during the planning horizon of

T time periods corresponds to an islanded operation during

τ consecutive periods. With the T − τ criterion, the study

proposed a model and a decomposition algorithm to set up

a proactive policy. In addition to islanding uncertainty, the

uncertain load demand and the renewable generation were also

considered in [7] and [8]. An operation plan of a microgrid

is set up with the help of a demand response program in [9],

where the duration of an islanding event is considered to be

uncertain. In addition, robust optimization approaches with

time periods

Under Islanding Under Islanding

start end recur
duration

Planning horizon

Fig. 1. Illustration of multi-occurring multi-period islanding events

budget uncertainty sets are also suggested in [10] and [11],

where the duration of an islanding event is controlled by a

parameter.

Although the above-mentioned existing studies have made

important contributions, a number of points need to be ad-

dressed to optimize the operation of the microgrids for the

islanding events.

As previously reported, islanding events were viewed only

as contingencies to avoid spreading accidents. However, be-

cause they may not be a serious inconvenience to internal

loads if they are properly prepared, microgrid islanding can

also be used as an ancillary service for the operation of the

main grid by the system operator. There are some studies on

the use of demand-side reserve resources [12]-[15]. In this

regard, Lee et al. [16] interpreted microgrid islanding as a

contract in the reserve market. In this situation, the system

operator can use it as a reserve resource to improve the grid

reliability. Since the reserve resources are deployed for the

system operation, the number of occurrences and the duration

of the islanding events during the planning horizon can vary

according to the contractual relationship between the MGO

and the system operator [15]. Considering that the global

electricity markets are increasing their time granularity as

the level of renewable energy increases [17]-[18], microgrid

islanding can occur several times a day on a 15-minute or

30-minute basis. In this respect, the existing studies in the

context of operation planning are limited since the proposed

methods may not make the microgrids’ energy supply suf-

ficiently reliable and cost-effective. Therefore, optimizing a

proactive policy that considers multi-period islanding events

and multiple occurrences is necessary.

To the best of our knowledge, optimization models that

consider uncertain islanding events as described in previous

studies [5]-[11] are restricted to two-stage models. As a result,

a normal operation plan is made in the first-stage and a set of

recourse actions under the full realization of uncertain factors

is made in the second-stage. However, when considering the

dynamic nature of islanding events, a multistage model needs

to be developed that carefully considers the non-anticipativity
constraints. This will enforce a recourse decision without the

knowledge of future islanding events. In other words, since

the start, end, and the recurrence of islanding events are not

known in advance, as demonstrated in Fig. 1, recourse actions

made to the baseline plan up to time period t cannot be

planned and executed in anticipation of the islanding events,

which might occur after t + 1. Thus, the non-anticipativity

constraints should be appropriately considered when estab-

lishing the operation plans. That is, a proactive policy can

genuinely be accomplished by the multistage model with non-
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anticipativity constraints, which cannot be fully achieved by

two-stage models [5]-[11]. Otherwise, an operation plan can

be inexecutable by itself or can incur a significant cost [19].

This paper focuses on resolving the above-mentioned issues,

and the contributions are summarized as follows.

• In order to consider the recurring multi-period islanding

events, a T τ criterion is proposed. With this criterion, the

islanding scenario corresponds to the islanded operations

that occur up to τ for T time periods and they are not

necessarily consecutive. By incorporating the possibility

of the realization of each scenario by optimizing a proac-

tive policy, the probability of each scenario is considered.

Based on the T τ criterion, a multistage stochastic opti-

mization model is proposed to set up a proactive policy

that minimizes the expectation of the total operation cost.

As a result, the non-anticipativity constraint was carefully

implemented to ensure the feasibility of the obtained

proactive policy.

• The proposed T τ criterion is not a minor extension of the

T − τ criterion by Khodaei [6]. The number of possible

islanding scenarios under the T − τ criterion is at most

T ; however, the T τ criterion is O(T τ ), which makes the

scale of the optimization model fundamentally different.

To solve this large-scale problem, an efficient algorithm

was devised based on the two-stage Benders’ decomposi-

tion method, which can be deployed in practice. The pro-

posed algorithm also provides a controllable parameter to

speed up the computation while guaranteeing the quality

of the obtained solution to be within a pre-specified error;

thus, further enhancing its practical applicability.

• Through numerical experiments, the performance of the

proposed proactive policy was quantitatively evaluated

and compared with the reactive policies that prepare

a reserve capacity and reschedule the resources after

islanding events occur. In addition, a sensitivity analysis

that examines the change of the market prices or the

islanding probabilities was conducted.

The rest of the paper is organized as follows. In Section II, an

extensive formulation of the multistage stochastic optimization

model with the related modeling considerations is presented.

In Section III, an efficient algorithm based on the two-stage

Benders’ decomposition method is described. Section IV pro-

vides a discussion of the numerical experiments to investigate

the performance of the proposed approach. Finally, Section V

delivers the conclusions of this study followed by a description

of our future research.

II. MULTISTAGE STOCHASTIC OPTIMIZATION MODEL

A. Islanding Scenarios with the T τ criterion

The planning horizon which is typically one day is dis-

cretized into T time periods, each of whose length is typically

one hour. However, it can be shorter depending on the desired

granularity of operation plans. For a given integer parameter

τ , 0 ≤ τ ≤ T , a possible islanding scenario under the T τ

criterion is any set of k time periods of islanded operation

such that k ≤ τ .
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Fig. 2. Scenario tree (T = 4, τ = 3) and a partition of S \ {s0}

Let S be the set of all possible scenarios, and for each s ∈ S
let Is ⊆ H be the corresponding time periods of islanded

operation. The set S can be represented in a tree structure,

which we call the scenario tree, as depicted in Fig. 2 with T =
4 and τ = 3. Each node of the tree represents the time period

that the microgrid is under islanded operation. An islanding

scenario corresponds to each node, in which a set of islanding

events is represented by the path from the root node to that

node. For example, scenario s2 indicates islanding in period

2 and resynchronization with the main grid in period 3. Of

course, islanded operation could last through period 3 (s8) or

period 4 (s14), or recur in period 4 after resynchronization in

period 3 (s9).

B. Baseline Plan and Recourse Actions

Adjustable loads that could be curtailed, dispatchable ther-

mal units, non-dispatchable renewable sources, and BESSs are

considered as the components of a microgrid. A proactive

policy consists of a baseline plan and a sequence of recourse

actions (an adjustment plan) for each possible islanding sce-

nario. A baseline plan sets up transaction amount with the

main grid, commitment states of dispatchable units and the

corresponding generation amount, and the amount of lost

loads for each time period of the horizon for scenario s0
that corresponds to the normal operation. Those factors can

be adjusted in preparing a sequence of recourse actions for

each islanding scenario, and a higher degree of freedom in the

adjustment reduces the additional cost incurred by the change.

However, quickly modifying the planned commitment states

of thermal units may not be viable in practice. Therefore, in

setting up a sequence of recourse actions for each islanding

scenario, the commitment states of thermal units determined

by the baseline plan for the whole planning horizon is fixed,

but all the other factors are allowed to be adjusted. Note

that we allow the charging/discharging states of BESSs to be

modified to take advantage of the fast response characteristics

of BESSs.
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Fig. 3. Illustration of the relationship between the operation plans of scenario
s and its parent α(s)

C. Non-anticipativity Constraint

Since an MGO has no choice but to make decisions without

knowing exactly which of the various future islanding scenar-

ios will become reality, one operation plan up to time period

t should be set up for a subset of scenarios each of which

has the same set of time periods of islanded operation up to

t. To consider this non-anticipativity constraint, relationships

among the scenarios are defined and carefully handled.

For each scenario s ∈ S, let Hs be the set of time

periods until just before the last islanding event, that is,

Hs := {1, . . . , t(s) − 1} where t(s) = max{k|k ∈ Is}. For

si, sj ∈ S, we also call si the parent scenario of sj , which

is denoted as α(sj) = si, if Isi = Isj ∩ Hsj . For example,

in Fig. 2, α(s14) = s8, α(s8) = s2, and α(s2) = s0. The

non-anticipativity constraint means that the operation plan up

to t(s) − 1 for scenario s ∈ S should be the same as that of

its parent scenario α(s), as illustrated in Fig. 3, which is very

important to ensure the feasibility of the operation plan.

D. Extensive Formulation of the Optimization Model

In the following, a multistage stochastic optimization model

to optimize a proactive policy is proposed considering the

modeling issues described earlier in this section. The model is

presented in the form of the extensive formulation which will

be represented in a compact formulation in the next section to

describe our decomposition approach.

min
∑

s∈S

ps
∑

t∈H,g∈G

[Fg(P
s
gt, ST

s
gt) + ρtPMs

t +KtLS
s
t ] (1)

s.t.
∑

g∈G

P s
gt +

∑

e∈E

(PDs
et − PCs

et) + PMs
t

+ PNt + LSs
t ≥ Dt, ∀t ∈ H, s ∈ S, (2)

PMs
t = 0, ∀s ∈ S, t ∈ Is, (3)

− Pmax
M ≤ PMs

t ≤ Pmax
M , ∀s ∈ S, t ∈ H \ Is, (4)

Pmin
g Isgt ≤ P s

gt ≤ Pmax
g Isgt, ∀g ∈ G, t ∈ H, s ∈ S, (5)

P s
gt − P s

g(t−1) ≤ RUg, ∀g ∈ G, t ∈ H, s ∈ S, (6)

P s
g(t−1) − P s

gt ≤ RDg, ∀g ∈ G, t ∈ H, s ∈ S, (7)

PDs
et ≤ PDmax

e Us
et, ∀e ∈ E, t ∈ H, s ∈ S, (8)

PCs
et ≤ PCmax

e V s
et, ∀e ∈ E, t ∈ H, s ∈ S, (9)

Us
et + V s

et ≤ 1, ∀e ∈ E, t ∈ H, s ∈ S, (10)

Es
et = Es

e(t−1) + σePCs
et −

1

σe
PDs

et,

∀e ∈ E, t ∈ H, s ∈ S, (11)

Emin
e ≤ Es

et ≤ Emax
e , ∀e ∈ E, t ∈ H, s ∈ S, (12)

Es
eT = TEe, ∀e ∈ E, s ∈ S, (13)

∑

t∈H

UV s0
et ≤ ENe, ∀e ∈ E, (14)

UV s0
et ≥ Us0

et − Us0
e(t−1), ∀e ∈ E, t ∈ H, (15)

UV s0
et ≥ V s0

et − V s0
e(t−1), ∀e ∈ E, t ∈ H, (16)

ST s0
gt ≥ Is0gt − Is0g(t−1), ∀g ∈ G, t ∈ H, (17)

SP s0
gt ≥ Is0g(t−1) − Is0gt , ∀g ∈ G, t ∈ H, (18)

Is0gt − Is0g(t−1) ≤ Is0gk,

∀k ∈ [t+ 1,min{t+MUg − 1, T}], t ∈ H \ {1}, (19)

Is0g(t−1) − Is0gt ≤ 1− Is0gk,

∀k ∈ [t+ 1,min{t+MDg − 1, T}], t ∈ H \ {1}, (20)

Isgt = Is0gt , ∀g ∈ G, t ∈ H, s ∈ S, (21)

ST s
gt = ST s0

gt , ∀g ∈ G, t ∈ H, s ∈ S, (22)

SP s
gt = SP s0

gt , ∀g ∈ G, t ∈ H, s ∈ S, (23)

P s
gt = P

α(s)
gt , ∀g ∈ G, t ∈ Hs, s ∈ S \ {s0}, (24)

PMs
t = PM

α(s)
t , ∀t ∈ Hs, s ∈ S \ {s0}, (25)

Us
et = U

α(s)
et , ∀e ∈ E, t ∈ Hs, s ∈ S \ {s0}, (26)

V s
et = V

α(s)
et , ∀e ∈ E, t ∈ Hs, s ∈ S \ {s0}, (27)

PCs
et = PC

α(s)
et , ∀e ∈ E, t ∈ Hs, s ∈ S \ {s0}, (28)

PDs
et = PD

α(s)
et , ∀e ∈ E, t ∈ Hs, s ∈ S \ {s0}, (29)

Isgt, ST
s
gt, SP

s
gt, U

s
et, V

s
et, UV s

et ∈ {0, 1},
∀g ∈ G, e ∈ E, t ∈ H, s ∈ S,

P s
gt, LS

s
t , E

s
et, PCs

et, PDs
et ≥ 0,

∀g ∈ G, e ∈ E, t ∈ H, s ∈ S.

Objective function (1) is the expected total operation costs

where ps is the probability of scenario s ∈ S. For each

scenario s, the operation costs consist of the power generation

cost, power transaction cost with the main grid, and penalty

cost for load shedding. The generation cost is the sum of the

start-up cost and variable generation cost. For the variable

generation cost of a generator, we use a linear approximation

according to [6], [20]. The transaction cost is calculated by

multiplying the transaction amount by the market price. When

purchasing power from the main grid, the cost is positive, and

in the opposite case, a negative cost (profit) is incurred. Finally,

the penalty cost is calculated by multiplying the load shedding

amount by the value of lost load (VoLL).

The constraints consist of operational constraints (2)-(20)

and the non-anticipativity constraints (21)-(29). Constraint (2)

ensures load demand should be met for each time period.

Constraint (3) indicates that the microgrid cannot perform

transaction with the main grid when islanding occurs, and (4)

limits the amount of power that can be transferred to or from

the main grid. Each unit’s maximum/minimum generation

limits and ramp up/down rate limits are imposed in (5)-

(7). Constraints (8) and (9) limit the maximum charging and

discharging values of each BESS. Constraint (10) requires that

the state of each BESS in each time period is either charging

or discharging. Constraint (11) defines the storage transition

function of a BESS at each time period, and (12) sets the

maximum and minimum energy storage levels for the safe use
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of BESSs. Constraint (13) ensures that the energy storage level

of each BESS must match the target at the end of the planning

horizon. Constraints (14)-(20) represent operational constraints

for s0. Constraint (14) limits the number of state transitions of

BESSs in the planning horizon. Constraints (15) and (16) are

logical constraints placed on the charging/discharging states

to represent the number of state transitions. Note that (14)

is imposed only for s0 since we allow the state of BESSs

to be changed under islanded operation. Constraints (17)

and (18) are defined to represent the logical relationships

between on and off state and the start-up and shut-down

actions. Constraints (19) and (20) impose the minimum up and

down times for each unit. Constraints (21)-(29) indicate non-

anticipative requirements. Constraints (21)-(23) specify that

the commitment states of generators for each scenario are

the same as that of s0. Constraints (24)-(29) require that the

remaining decisions of each scenario are the same as those of

its parent scenario.

III. DECOMPOSITION APPROACH

The optimization model given in the previous section is a

large-scale mixed-integer program (MIP), whose number of

variables and constraints grow exponentially as T and τ get

larger. For example, if T = 24 and τ = 2, the size of the

model is about 300 times larger than that with no islanding

event (τ = 0), so that the number of variables and that of

constraints is over 170,000 for the experimental setting with

four thermal generators given in the next section. This ob-

servation motivates us to devise an efficient and well-tailored

decomposition algorithm based on the Benders’ decomposition

method [21], which is also known as the L-shaped method

[22]. The proposed approach can provide an optimal solution

or a provable near optimal solution in a reasonable time. This

can be achieved by controlling a parameter, ε ≥ 0, which is

the duality gap.

A. Compact Representation of the Extensive Formulation

For the ease of the expositions of our decomposition ap-

proach, we first represent the extensive formulation in a com-

pact form using the concatenated vectors of decision variables,

xs
c, xs

b , xs
d, and xs

m, for all s ∈ S. For that purpose, we define

Si(⊂ S) for each i ∈ H as the set of scenarios for which the

first islanding event occurs in period i. Then, {S1, S2, . . . , ST }
forms a partition of S \ {s0} as illustrated in Fig. 2 given

earlier. We also let C be the dimension of xs
c, and let B be

that of xs
b . Then, the extensive formulation can be rewritten

as the following compact form where xs := (xs
c,x

s
b,x

s
d,x

s
m).

min ps0c
�xs0 +

∑

i∈H

∑

s∈Si

psc
�xs (30)

s.t. Axs0 ≥ b, (31)

Asxs ≥ bs, ∀s ∈ Si, i ∈ H, (32)

xs
c = xs0

c , ∀s ∈ Si, i ∈ H, (33)

Csxs = Csxα(s), ∀s ∈ Si, i ∈ H, (34)

xs
c ∈ {0, 1}C ,xs

b ∈ {0, 1}B, ∀s ∈ S,

xs
d ≥ 0, ∀s ∈ S,

where c is the cost vector of an appropriate dimension. Con-

straint (31) is a vector inequality representation of constraints

(2)-(20) related to s0 with a matrix A and a vector b of

appropriate dimensions. Similarly, constraint (32) corresponds

to constraints (2)-(13) related to s ∈ S \{s0}. Constraints (33)

and (34) are the non-anticipativity constraints. Among them,

constraint (33) specifies that the commitment decision of the

remaining scenarios should be the same as that of s0, which

corresponds to constraints (21)-(23). Finally, constraint (34)

is a compact representation of constraints (24)-(29) related to

s ∈ S \ {s0}.

B. Decomposition Algorithm

Based on the two-stage Benders’ decomposition method,

an efficient decomposition algorithm, BD(ε), is devised as

given in Algorithm 1, for which we decompose the extensive

formulation into one first-stage master problem, MP , and a

number of second-stage subproblems, SUB(i) for each i ∈ H .

MP is to determine xs0 , which is the baseline operation plan

for scenario s0, while minimizing the sum of the expected cost

of xs0 and the sum of estimates (ηi) of the optimal objective

values of the subproblems, so that the optimal objective value

of MP gives a lower bound (zL) on that of the extensive

formulation. For the given optimal solution of MP , x̂s0 and

η̂i for all i ∈ H , SUB(i) is to find xs for all s ∈ Si while

minimizing the total expected cost over all scenarios in Si. If

we further let x̂s for all s ∈ S \ {s0} be the optimal solutions

obtained by solving the subproblems, then it can be readily

shown that the solution x̂s for all s ∈ S is feasible to the

extensive formulation, and hence the corresponding objective

value is a valid upper bound (zU ). If the optimal objective

value of SUB(i) (zi) for each i ∈ H is not greater than η̂i,
then the current solution x̂s for all s ∈ S is optimal, i.e.,

zL = zU . Otherwise, we find and add the so-called optimality

cuts to correct the value of the estimate ηi for i ∈ H such that

zi > η̂i, and then repeat the above process until zU−zL < εzL
for a pre-specified control parameter ε > 0. Now, we give

the master problem and the corresponding subproblems in the

(n+ 1)th iteration as follows.

(MP ) min ps0c
�xs0 +

∑

i∈H

ηi (35)

s.t. Axs0 ≥ b, (36)

ηi ≥ (aki )
�xs0 + dki , ∀i ∈ H, k ∈ [n], (37)

xs0
c ∈ {0, 1}C ,xs0

b ∈ {0, 1}B,xs0
d ≥ 0,

where [n] := {1, . . . , n} and constraints in (37) are the

optimality cuts added up to iteration n. For each i ∈ H ,

the corresponding subproblem is as follows where x̂s0 is the

obtained optimal solution of MP and si is the scenario such

that α(si) = s0.

(SUB(i)) min
∑

s∈Si

psc
�xs (38)

s.t. Asxs ≥ bs, ∀s ∈ Si, (39)

xs
c = x̂s0

c , ∀s ∈ Si, (40)

Csixsi = Csi x̂s0 , (41)
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Csxs = Csxα(s), ∀s ∈ Si \ {si}, (42)

xs
b ∈ {0, 1}B,xs

d ≥ 0, ∀s ∈ Si.

SUB(i) is a mixed integer program in which the operation

plans of the scenarios are established whose first island-

ing occurs at i. Binary variables xs
b represent the charg-

ing/discharging states of BESSs. The problem is always feasi-

ble, since a feasible solution can be constructed as follows.

An operation plan of each scenario s ∈ Si is established

by setting (xs
c,x

s
b,x

s
d,x

s
m) = (x̂s0

c , x̂s0
b , x̂s0

d , x̂s0
m) except for

PMs
t = 0 for its islanding periods t ∈ Is and constraint (2),

which is included in (39), can be satisfied by load shedding

LSs
t in those periods. Moreover, even though SUB(i) itself is

a large-scale mixed integer program, it can be shown that we

can construct a feasible solution to SUB(i) with the same

objective value from a feasible solution to its linear pro-

gramming relaxation, denoted by SUBLP (i). In other words,

xs
b ∈ {0, 1}B in SUB(i) is relaxed to xs

b ∈ [0, 1]B. That is,

we only have to solve SUBLP (i) to optimize SUB(i). If

zi > η̂i, then an optimality cut can be generated using the

corresponding optimal dual solution of SUBLP (i). Let μs,

νs, and πsi be the obtained vectors of optimal dual solutions

of appropriate dimensions corresponding to constraints (39),

(40), and (41), respectively. Then, the coefficients of optimality

cuts are computed as

(an+1
i )� := π�

siC
si +

∑

s∈Si

ν�
s , (43)

dn+1
i :=

∑

s∈Si

μ�
s b

s. (44)

Since, for each i ∈ H , we find and add the corresponding

optimality cut whenever zi > η̂i, multiple cuts can be added

to MP in one iteration. This approach is also known as the

multicut version of the L-shaped method [22] which has the

advantage of enhancing the speed of convergence by adding

several cuts to the master problem at one iteration.

IV. COMPUTATIONAL ANALYSIS

A. Experimental Setting

A microgrid with four thermal units, one wind farm, and one

BESS was used to analyze the performance of the proposed

approach. The characteristics of thermal units and the BESS,

which were scaled for microgrid environments based on [6]

and [23], are given in Tables I and II, respectively. In Table

I, a negative sign of the initial state of a generator indicates

the duration during which the generator has been off. In the

experiments, the length of each time period was set to 1h.

The load demand and market price follow the forecast data

of PJM-RTO [24] for October 8, 2018, and the load forecast

was scaled to fit the microgrid environment. In addition, the

forecasted renewable generation was derived from [23] and

also scaled. Those data for a 24h horizon are given in Table

III. In addition, the maximum transaction with the main grid

(Pmax
M ) was set to 10 MW, the BESS can change states up

to two times in the planning horizon (ENe = 2), and the

VoLL for each time period t (Kt) was set to 5,000 USD/MWh,

according to [25] and [26]. The probability of scenario s0 (ps0 )

Algorithm 1 Two-stage decomposition algorithm

1: procedure BD(ε)
2: zU ← ∞, zL ← 0;

3: xs ← ∅ ∀ s ∈ S, zi ← ∞ ∀ i ∈ H;

4: n ← 1;

5: while zU ≥ zL (1 + ε) do
6: solve MP and get x̂s0 , η̂i, ∀ i ∈ H;

7: zL ← ps0c
�x̂s0 +

∑
i∈H η̂i;

8: for all i ∈ H do
9: solve SUBLP (i) and get x̂s, ∀ s ∈ Si;

10: zi ← ∑
s∈Si

psc
�x̂s;

11: if zi > η̂i, then, add an optimality cut;

12: end for
13: if zU >

∑
s∈S psc

�x̂s then
14: zU ← ∑

s∈S psc
�x̂s;

15: xs ← x̂s, ∀ s ∈ S;

16: end if
17: n ← n+ 1;

18: end while
19: return zL, zU , and xs, ∀ s ∈ S;

20: end procedure

was set to 0.9, and the islanding probability (
∑

s∈S\{s0} ps)

was set to 0.1 with ps having the same probability for each

s ∈ S \ {s0}.

The basic setting mentioned above holds during the sec-

tion, unless otherwise specified. All the experiments were

conducted on an Intel Core 3.10 GHz processor with 16 GB of

RAM using Xpress-MP 8.4 [27], which is a general-purpose

MIP solver.

B. Cost Analysis

In the cost analysis, the proposed proactive policy with

ε = 0 was compared with three reactive policies: D_0.1,

D_0.2, and No_Reserve. To establish a feasible real-

time operation of the reactive policies, we mimicked an

TABLE I
CHARACTERISTICS OF THERMAL UNITS

Generators G1 G2 G3 G4

Unit Cost [$/MWh] 27.7 39.1 61.3 65.6

Min-Max Capacity [MW] 2-10 1-5 1-5 0.8-3

Min Up/Down Time [h] 3 3 3 1

Ramp Up/Down Rate [MW/h] 4 3 3 2.5

Start-up Cost [$] 50 20 20 5

Initial State [h] 5 3 -3 -1

TABLE II
CHARACTERISTICS OF BESS

BESS
Capacity

[MWh]

Max Charging/

Discharging

Power [MW]

SOC

Operation

Range [%]

Initial-

Target

SOC [%]

Charging/

Discharging

Efficiency [%]

E1 10 5 10-90 50 90
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TABLE III
LOAD DEMAND, MARKET PRICE, WIND GENERATION DATA

Time [h] 1 2 3 4 5 6

Load [MW] 21.91 21.43 21.12 21.00 21.14 21.63

Price [$/MWh] 26.63 23.11 21.10 20.52 20.62 25.10

Wind [MW] 5 4.88 5.09 5.25 4.75 4.62

Time [h] 7 8 9 10 11 12

Load [MW] 22.58 23.28 23.70 24.24 24.86 25.43

Price [$/MWh] 33.84 29.94 28.96 38.14 35.64 88.60

Wind [MW] 4.75 4.88 4.37 4.12 4.25 4.88

Time [h] 13 14 15 16 17 18

Load [MW] 25.96 26.43 26.79 26.96 27.00 26.94

Price [$/MWh] 51.11 61.66 94.87 104.75 74.10 104.69

Wind [MW] 5.09 5.38 5.09 4.75 4.37 4.00

Time [h] 19 20 21 22 23 24

Load [MW] 26.68 26.59 26.12 25.29 24.26 23.25

Price [$/MWh] 86.25 73.51 64.38 34.42 34.57 25.60

Wind [MW] 3.75 3.62 4.00 4.25 4.37 4.12

TABLE IV
OVERALL COST AND LOAD SHEDDING COMPARISON OF THE POLICIES

FOR 1-DAY DATA

Policy
Operation Cost Exp. of Load Shedding

[MWh / day]Base Exp Worst

Proactive 100 100.32 226.07 0.09

Reactive

D_0.2 105.81 110.92 461.57 1.62

D_0.1 101.66 111.61 493.30 3.03

No_Reserve 98.99 112.54 708.66 4.75

operation framework ([19] and [28]) that is commonly used

in power systems. For the framework, a day-ahead baseline

plan is amended with look-ahead dispatch processes when an

unexpected event occurs. For each of the reactive policies,

the baseline plan is established by solving an MIP which is

the extensive formulation with S = {s0} and the following

additional constraints to require the reserve requirement (Rt):

∑

g∈G

rs0gt ≥ Rt, ∀t ∈ H, (45)

P s0
gt + rs0gt ≤ Pmax

g Is0gt , ∀g ∈ G, t ∈ H, (46)

where rs0gt is a nonnegative decision variable to represent the

amount of reserve of unit g ∈ G in time period t ∈ H .

For D_0.1 and D_0.2, Rt was set to 0.1 and 0.2 times

of load demand (Dt), respectively. In contrast, Rt = 0 for

No_Reserve. Once an islanding event occurs at t
′
, the

baseline plan from t
′

onward is modified by solving again the

above-mentioned MIP but with Rt′ = 0 and the commitment

state of thermal units determined by the initial baseline plan

being fixed.

1) 1-day Data: Cost experiments were conducted for T =
24 and τ = 2, where up to two hours of islanding events are
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Fig. 4. Weekly net load and market price data for the spring and summer

TABLE V
OVERALL COST AND LOAD SHEDDING COMPARISON OF THE POLICIES

FOR WEEKLY DATA

Policy
Operation Cost Exp. of Load Shedding

Ratio to Total Load (%)Base Exp Worst

Spring

Proactive 100 100.75 569.82 0.02

D_0.2 98.97 122.47 899.87 0.80

D_0.1 98.82 122.71 872.70 0.81

No_reserve 97.39 147.60 1220.98 1.71

Summer

Proactive 100 100.77 299.87 0.03

D_0.2 99.94 116.41 478.93 0.80

D_0.1 97.92 123.18 603.21 1.23

No_reserve 96.75 129.54 750.47 1.60

considered in a 24h planning horizon. For the entire planning

horizon, the total costs when no islanding occurs (Base) as

well as the expected (Exp) and worst (Worst) costs over

all possible scenarios under the T τ criterion are compared in

Table IV, where all costs were scaled by setting the base cost

of the proactive policy (USD 15,900) to 100. The expected

amount of load shedding for each policy is also summarized.

As shown in Table IV, the baseline operation cost of

No_Reserve is the lowest because it does not prepare for

islanding events unlike other policies. Therefore, this policy

incurs significant cost increase when an islanding occurs and

the expected and worst costs of this policy become the highest.

For the other two reactive policies (D_0.1 and D_0.2),

the policy with more reserve requirement responds better to

uncertainty at the expense of increased baseline cost. On the

other hand, the proposed proactive policy requires only about

1.0% increase in the baseline cost compared to No_Reserve,

but the expected and worst cost were significantly reduced

compared to reactive policies. This shows that the proposed

proactive policy is more flexible and efficient in dealing with

islanding uncertainty than reactive policies preparing reserve

for every time period.

2) Weekly Data: The operation costs of our proactive policy

are also compared with those of the reactive policies for

different data over two weeks. This occurred during the spring

off-peak period in April and during the summer peak period in

July. The load demand and market price are also obtained from

PJM-RTO [24], and the values of the load demand are scaled

to fit our microgrid environment. In both spring and summer,

the weekly wind generation data are made by repeating the

values in Table III seven times. The spring and summer weekly

net load and market price patterns used in this subsection are

illustrated in Fig. 4, and the dotted lines indicate the market



8

prices. In addition, it was assumed that the islanded operation

can occur up to two hours a day for each week.

The weekly operating costs of all policies in the spring and

summer are represented in Table V. All costs were scaled by

setting the base costs of the proactive policy in each week

(Spring : USD 47,028, Summer : USD 102,634) to 100. First

of all, the last column in Table V indicates the expectation

of the load shedding ratio to the total load, and it is shown

that load shedding barely occurs in the proactive policy even

if islanding occurs. Furthermore, the result indicates that the

proactive policy is more effective in spring than summer,

in comparison to the other policies. This is because the

low market price in the spring makes the microgrid much

more dependent on the market; thus, resulting in a significant

increase in the operation costs during the islanded operation.

In other words, the average market price is 21.7 USD/MWh in

the spring, and it is lower than the unit generation cost for all

of the generators. Therefore, for the reactive policies, in which

islanding events are not explicitly considered, it is efficient

to set up baseline plans with purchasing as much electricity

from the market as possible. In particular for No_Reserve,

all of the thermal units are barely turned on except for the

time periods where the net load exceeds the market transaction

limit. On the other hand, the units are utilized more actively in

the proactive policy. As a result, the proactive policy is much

more efficient than the reactive policies for the expected costs

and worst costs, at the expense of a small increase in the base

costs.

C. Sensitivity Analysis

In the sensitivity analysis, the expected costs of the proactive

policy with ε = 0 and three reactive policies (D_0.2, D_0.1,

No_Reserve) are compared for the 1-day data (Table III),

according to the change in the market prices and islanding

probabilities.

1) Market Price: A sensitivity analysis to the change in the

market prices was performed. Fig. 5 shows the expected cost

changes as market prices change from 0.4 to 1.6 times the

base price (the market price given in Table III). The average

base price (50.1 USD/MWh) is located midway between

generation costs of the four generators. When the ratio is low

(0.4), the market price is lower than the unit generation cost

of each generator. When the ratio is high (1.6), it is more

expensive than the unit cost of each generator. From Fig. 6,

we can see that the expected operation costs of the proactive

policy are always the lowest. On the other hand, two trends

are observed for reactive policies. First, when the electricity

market price is low, the operation cost of a reactive policy

increases as the reserve requirement decreases. This is because

lower market prices increase the amount of energy purchased

from outside, which cause an increased imbalance between

supply and demand in the event of islanded operation. Since

microgrids are unable to handle the imbalance if they only

have a small reserve capacity, expensive load shedding must

be implemented. In contrast, when the electricity market price

is high, the operation cost of a reactive policy decreases as the

reserve requirement decreases. This is because a high reserve
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Fig. 5. Expected costs for the different electricity prices

TABLE VI
AVERAGE DEPLOYED RESERVE TO THE DEMAND RATIO(%) IN THE

BASELINE PLAN

Policy
Ratio to base price

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Proactive 25.6 27.1 22.0 17.7 11.8 8.5 6.9

D_0.2 22.6 26.3 25.4 24.0 22.0 21.1 20.9

D_0.1 13.7 14.7 13.9 13.0 10.8 12.3 12.9

No_Reserve 7.8 8.1 9.2 7.9 5.1 2.6 4.9

0.04 0.06 0.08 0.1 0.12 0.14 0.16

16,000

17,000
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C
o
st
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)

Proactive
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D_0.2
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Fig. 6. Expected costs for the various islanding probabilities

requirement reduces the use of generators in the microgrid

and forces it to purchase energy from the market, even though

the unit price of internal generators is lower than that of

the external market. That is, in this situation, the microgrid

experiences a significant increase in the operation cost for the

most of time periods under normal connected operation.

As Table VI shows, the proactive policy also holds consider-

able reserve even without explicit reserve requirements, but it

varies according to the price ratio. In other words, by holding

more reserve when prices are low, and less when prices are

high, an MGO can be better prepared for islanding events with

the proposed proactive policy than reactive policies, which

hold nearly constant reserve capacities.

2) Islanding Probability: A sensitivity analysis to the

change in the islanding probability was also performed. Fig. 6

shows the expected cost changes as the islanding probability

(
∑

s∈S\{s0} ps) varies from 0.04 to 0.16. In the experiment,

the probability of each islanding scenario is set equal to each
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other. From Fig. 6, a linear relationship between the islanding

probability and the expected cost is shown for all policies.

However, the slope of the proactive policy is the lowest,

which is almost zero, and it means that the proactive policy

can hedge against various islanding probabilities. Among the

reactive policies, D_0.2 is less affected than the other two

reactive policies, since the slope is the lowest. This result

indicates that preparing more reserve capacity is inefficient

when the islanding risk is low; however, it has a critical role

when the islanding risk increases. In contrast, the slope of

No_Reserve is the highest, which implies that the policy is

vulnerable when islanding is highly likely to occur.

D. Performance of Solution Approaches

The performance of our decomposition algorithm, BD(ε),
for ε = 0, 0.01, 0.05, and 0.1 were tested in comparison with

the direct MIP approach (solving extensive formulation by an

MIP solver) for different numbers of islanding scenarios and

generators.

1) Different Numbers of Islanding Scenarios: The com-

putation time of the solution approaches were compared for

the different number of islanding scenarios, in which each

corresponds to a combination of T and τ . Seven combinations

of T and τ are tested, and the corresponding numbers of

scenarios are shown in Table VII. For each combination,

five instances are generated with the islanding probability

(
∑

s∈S\{s0} ps) being equal to 0.02, 0.04, 0.06, 0.08, or 0.1.

For the instances with T = 48 and T = 72, the data set

for T = 24 given in Table III is repeated 2 and 3 times,

respectively.

TABLE VII
NUMBER OF SCENARIOS FOR THE VARIOUS T AND τ COMBINATIONS

T τ 241 481 721 242 482 722 243

|S| 25 49 73 301 1,177 2,629 2,325

241 481 721 242 482 722 243
100

101

102

103

T τ

T
im

e
(s

)

Direct MIP

BD(0)

BD(0.01)

BD(0.05)

BD(0.1)

Fig. 7. Comparison of the computation time for the different numbers of
scenarios

TABLE VIII
EXPECTED COST COMPARISON OF THE POLICIES IN T = 24 AND τ = 2

Proactive Policies Reactive Policies

ε = 0 ε = 0.01 ε = 0.05 ε = 0.1 D_0.2 D_0.1 No_Reserve

100.32 100.41 100.97 100.97 110.92 111.61 112.54

Direct MIP BD(0) BD(0.01) BD(0.05) BD(0.1)
100

101

102

103

T
im

e
(s

)

4-unit 8-unit

Fig. 8. Comparison of the computation time for the different numbers of
generators

The average computation time over five instances of each

solution approach is plotted in Fig. 7. The time limit for each

instance was set to 1800s, which is indicated as the horizontal

line. The red-dashed region represents the instances that could

not be solved by the direct MIP approach. The results show

that the direct MIP approach can be faster than BD(0) when

the number of scenarios is relatively small (241, 481, and

721). However, the instances with larger numbers of scenarios

(>1000) could not be loaded into the memory due to their

excessively large size, so that the direct MIP approach was

not viable. On the other hand, the proposed BD(ε) with ε > 0
shows better performance than the direct MIP approach even if

the size is small except for the case of 241. For the large-sized

instances, it was 4 to 16 times faster than BD(0). Furthermore,

Table VIII shows that even though the controllable parameter

ε increases, the expected cost increases much smaller, which

is also significantly smaller than that of reactive policies. This

shows that the proposed decomposition algorithm with the

controllable parameter can find near-optimal solutions in much

less time.
2) Different Numbers of Generators: The computational

time of the proposed algorithm is also compared to the direct

MIP approach for the different number of generators. The 8-

unit data is generated by dividing the min-max capacity, the

ramp rate, and the start-up cost of each generator in Table I by

half. For each number of generators, five instances were also

generated with the same islanding probabilities as described

in Section IV-D1. The average computation time over five

instances for each solution approach when T = 24 and τ = 2
is shown in Fig. 8. The result demonstrates that the BD(0) is

more sensitive to the number of generators than the others.

In other words, more iterations are needed to converge with

the proposed decomposition approach. On the other hand, the

computational times of the other approaches with the 8-unit

instance increased at a similar rate. In other words, we can

still obtain a high-quality solution in a reasonable time, by

using BD(ε) controlling ε > 0.

E. A heuristic based on the T 1 criterion

One possible way to set up a feasible operation plan for

the T τ criterion is to apply the T 1 criterion repeatedly. To

test the effectiveness of this approach, we devised and tested

a heuristic which we call a recursive T 1 criterion: solve a

model with T 1 to set up a baseline operation plan, and when an
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Fig. 9. Cost comparison of T τ and the recursive T 1 in T = 24 and τ = 2

islanding occurs at t
′
, another T 1 is solved to amend the plan

from t
′

onward. The baseline operation costs and the expected

costs for the whole scenarios are compared in a environment

where T = 24 and τ = 2, as described in the Section IV-B1,

and all costs were scaled by setting the base cost of the T τ

criterion (USD 15,900) to 100. The islanding probability was

also set to 0.1, and the probability of the islanding scenario

in the heuristic (p
′
i for i ∈ H) was set to the sum of the

islanding scenarios that the first islanding occurs at i in T τ ;

i.e. p
′
i :=

∑
s∈Si

ps. Fig. 9 shows that in comparison to T τ

criterion, the baseline plan’s cost of the heuristic is lower,

the expected cost of the heuristic is higher, and there is little

difference between the costs. In addition, the expected cost

of the heuristic is less than those of reactive policies, which

has shown in Table IV given earlier. This result implies that

the MGO can apply a recursive T 1 criterion as a heuristic to

operate a microgrid as an alternative to T τ criterion.

V. CONCLUSION

This study proposes a novel systematic method to optimize

a proactive policy for the operation of microgrids under the

possibility of islanding events from the MGO’s point of view.

Based on the T τ criterion that considers recurring multi-

period islanding events, a multistage stochastic optimization

model is proposed. This model carefully considers the non-

anticipativity constraint that establishes the executable opera-

tion plans. To deal with the large-scale optimization model,

an efficient decomposition algorithm is also devised. Compu-

tational experiments show that the proposed proactive policy

significantly reduces the expected operation costs as well as

the worst-case cost scenario. In addition, it is robust to the

changes in the market prices in comparison to the reactive

policies. Therefore, the proposed approach can be practically

used to reliably and cost effectively operate microgrids under

islanding uncertainty. It can also help the MGOs partici-

pating in the reserve market to establish their own bidding

strategy. In addition, it can be applied to other situations

other than island operations, in which the system’s condition

changes discretely and repeatedly during the planning horizon

(e.g. generation scheduling under network reconfigurations).

For further directions to implement the proposed method in

practice, a probability distribution of the islanding events

needs to be estimated more precisely based on the market

environment in which the reserve resources are deployed and

used. In addition, further studies are required that considers the

MGO’s compensation when the system operator activates the

islanded operation as a reserve resource. Finally, along with

the islanding uncertainty, other various uncertain factors, such

as the electricity price, demand, and renewable generation, can

be considered in future research. Since this would mean that

a large number of scenarios in a multi-stage program would

have to be considered, an efficient method to mitigate the

computational burden should be studied.
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[19] Á. Lorca, X. A. Sun, E. Litvinov, and T. Zheng, “Multistage adaptive
robust optimization for the unit commitment problem,” Operations
Research, vol. 64, no. 1, pp. 32–51, 2016.

[20] Q. P. Zheng, J. Wang, P. M. Pardalos, and Y. Guan, “A decomposition
approach to the two-stage stochastic unit commitment problem,” Annals
of Operations Research, vol. 210, no. 1, pp. 387–410, 2013.



11

[21] J. F. Benders, “Partitioning procedures for solving mixed-variables
programming problems,” Numerische Mathematik, vol. 4, no. 1, pp. 238–
252, 1962.

[22] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming.
Springer Science & Business Media, 2011.

[23] S. Kazarlis, A. Bakirtzis, and V. Petridis, “A genetic algorithm solution
to the unit commitment problem,” IEEE Transactions on Power Systems,
vol. 11, no. 1, pp. 83–92, 1996.

[24] Historical Load Forecast, PJM. [Online], 2018. https://dataminer2.pjm.
com/feed/load frcstd hist/definition.

[25] A. Papavasiliou and S. S. Oren, “Multiarea stochastic unit commitment
for high wind penetration in a transmission constrained network,”
Operations Research, vol. 61, no. 3, pp. 578–592, 2013.

[26] J. Frayer, S. Keane, and J. Ng, “Estimating the value of lost load,”
London Economics International LLC, 2013.

[27] FICO® Xpress Optimization. [Online], 2020. https://www.fico.com/.
[28] E. Nicholson, “Operator-initiated commitments in RTO and ISO mar-

kets,” tech. rep., FERC, 2014.

Jongheon Lee (S’20) received the B.S. and M.S.
degrees in industrial engineering from Seoul Na-
tional University, Seoul, Korea, in 2017 and 2019,
respectively. Currently, he is pursuing the Ph.D.
degree in the Department of Industrial Engineer-
ing, Seoul National University, Seoul, Korea. His
research interests include large-scale and stochastic
optimization with application in energy systems.

Siyoung Lee (M’17) received the B.S., M.S., and
Ph.D degrees in electrical engineering from Seoul
National University, Seoul, Korea, in 2009, 2011,
and 2016, respectively.

From 2017, he has been an Assistant Professor
with the Department of Energy and Electrical Engi-
neering, Korea Polytechnic University. His research
interests include electric power market design and
operation considering the integration of distributed
energy resources in the distribution system and the
P2P trades among them.

Kyungsik Lee (M’17) received the B.S. degree in
industrial engineering in 1993 from Seoul National
University, Seoul, Korea. He also received the M.S.
and Ph.D degrees in industrial engineering from Ko-
rea Advanced Institute of Science and Technology,
Daejeon, Korea, in 1995 and 1998, respectively.

He is a Professor of Industrial Engineering and
Associate Director of the Institute of Industrial Sys-
tems Innovation at Seoul National University. His
teaching and research interests include large-scale
optimization modeling and algorithms, including

their application in manufacturing, transportation and logistics, and energy
systems.


