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Abstract

In this paper, we consider a probability maximizing shortest path problem. For a given directed graph

with the length of each arc being an independent normal random variable with rational mean and standard

deviation, the problem is to find a simple s-t path that maximizes the probability of arriving at the destination

within a given limit. We first prove that the problem is NP-hard even on directed acyclic graphs with the

mean of the length of each arc being restricted to an integer. Then, we present pseudo-polynomial time exact

algorithms for the problem along with nontrivial special cases that can be solved in polynomial time. Finally,

we present a fully polynomial approximation scheme (FPTAS) that iteratively solves deterministic shortest

path problems. The structure of the proposed approximation scheme can be applied to devise FPTAS for

other probability maximizing combinatorial optimization problems once the corresponding deterministic

problems are polynomially solvable.
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1. Introduction

The shortest path problem is one of the fundamental combinatorial optimization problems. Given a

directed graph G = (V, A) with |V | = n and |A| = m, a source node s ∈ V , a destination node t ∈ V , and the

length (or travel time) la of each arc a ∈ A, the problem is to find a minimum-length simple path from node

s to node t. It is well-known that the problem can be solved in O(mn) if there is no negative cycle (Bellman,

1958). Further, if la ≥ 0 for all a ∈ A, Dijkstra’s algorithm runs in O(n2) (Dijkstra, 1959). Many studies

on efficient algorithms for the shortest path problem and its variants have been carried out for decades

(see, for example, Dantzig, 1960; Henig, 1986; Fredman & Tarjan, 1987; Ahuja et al., 1990; Cherkassky

et al., 1996; Taccari., 2016). Among them, Fredman & Tarjan (1987) improved the time complexity of the

Dijkstra’s algorithm to O(n log n + m) by using a Fibonacci heap. In recent years, stochastic shortest path

problems considering the uncertainty in travel time of each arc have been being actively studied by many

researches including Mirchandani (1976), Sigal et al. (1980), Murthy & Sarkar (1997), Azaron & Kianfar

(2003), Korkmaz & Krunz (2003), Nie & Wu (2009), Nikolova (2009), Xiao et al. (2011), Olya et al. (2014),

Chassein & Goerigk (2015), Cheng & Lisser (2015), Wang et al. (2016), Chen et al. (2017), Conde (2017),

Guillot & Stauffer (2020), Raith et al. (2018), Chassein et al. (2019), Duque & Medaglia (2019), Halman

et al. (2019), Goldberg & Poss (2020), and Wang et al. (2020).

In this study, we consider the probability maximizing shortest path problem (PSP). The problem is

to find a simple s-t path that maximizes the probability of arriving at the destination within a given time

budget b, when the travel time la follows an independent normal distributionN(μa, σ
2
a). To avoid confusion,

we define IA = {1, 2, . . . ,m} as the index set of arcs, and a(i) as the corresponding arc to index i ∈ IA.

Throughout the paper, we assume that b ∈ Q+, μ ∈ Qm
+ , and σ2 ∈ Qm

+ unless otherwise specified, where

μ := (μa(1), . . . , μa(m)) is the vector of means of arcs and σ2 := (σ2
a(1)
, . . . , σ2

a(m)
) is that of variances of

arcs. PSP has practical applications such as routing problems in the context of transportation (Nie & Wu,

2009; Chen et al., 2017) and telecommunication (Korkmaz & Krunz, 2003). It is also closely related to the

product-sum path problem (PSPP) considering the survival probability which can be applied to find safe

and short paths in a city (Galbrun et al., 2016; Halman et al., 2019). That is, PSP is equivalent to a variation

of PSPP of Halman et al. (2019), if la for each arc a ∈ A follows the distribution, Pr(la = μa) = pa and

Pr(la = ∞) = 1 − pa, where pa is the given survival probability of the arc.

Let P be the set of all simple s-t paths on G, and let us represent a simple s-t path in P by its corre-

sponding subset of arcs P ⊆ A. For the ease of later expositions, we also represent a path P ∈ P by its
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characteristic vector xP ∈ Bm, that is, xP
a = 1 if a ∈ P and xP

a = 0 otherwise, and let Xst ⊆ Bm be the set of

all possible characteristic vectors of s-t paths in P. For a given path P ∈ P, if we let l(P) :=
∑

a∈P la, then

PSP is defined as

ρ∗ = max
P∈P

Pr (l(P) ≤ b) ,

which is the same problem as

max
x∈Xst

Pr

⎛⎜⎜⎜⎜⎜⎝∑
a∈A

laxa ≤ b

⎞⎟⎟⎟⎟⎟⎠ .
Since we assume that the length of each arc follows an independent normal distribution, PSP is equivalent

to the following problem, which we call the Z-value problem (ZP in short).

z∗ = max
P∈P

(b − μ(P))/σ(P),

where μ(P) :=
∑

a∈P μa and σ(P) :=

√∑
a∈P σ2

a. Note that, while the optimal solutions of PSP and ZP

are equivalent in that they have the same probability of arriving at the destination within the given time

budget b, their approximate solutions with the same relative error are not necessarily equivalent. However,

Nikolova (2009) proved that an approximate solution of ZP is also an approximate solution of PSP with the

same relative error if there exists a path P ∈ P such that μ(P) ≤ b. PSP and ZP can be classified into two

special cases as follows:

• Case 1: There exists a path P ∈ P such that μ(P) ≤ b. For this case, which we call PSP-1 (or ZP-1),

ρ∗ ≥ 0.5 and z∗ ≥ 0.

• Case 2: For each path P ∈ P, μ(P) > b. For this case, which we call PSP-2 (or ZP-2), ρ∗ < 0.5 and

z∗ < 0.

Furthermore, if a problem is defined on a directed acyclic graph, we append ‘-DAG’ to the name of the

problem. Otherwise, it means that the problem is defined on a general directed graph. For example, PSP-2-

DAG is PSP-2 defined on a directed acyclic graph (DAG). Note that, for a given instance of PSP, checking

whether the instance belongs to PSP-1 or PSP-2 can be done in polynomial time by solving a deterministic

shortest path problem.

Xiao et al. (2011) proved that PSP-2 is strongly NP-hard by showing that the longest path problem,

which is strongly NP-hard (Johnson & Garey, 1979), can be polynomially transformed to PSP-2. The

theoretical complexity of PSP-1, as far as we know, has not been settled down, but Nikolova et al. (2006)
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showed that an upper bound on the computational complexity of exact algorithms for PSP-1 is O(nlog n)

based on the relation with the parametric shortest path problem.

For exact algorithms to solve PSP, Nie & Wu (2009) suggested a label-correcting algorithm which runs

in O(mn2n−1b +mnnb2). Chen et al. (2017) proposed an O(mp2 +m + n log n) algorithm by enumerating all

non-dominated paths, where p = |P|. On the other hand, Nikolova (2009) proposed a pseudo-polynomial

time exact algorithm for ZP that runs in O(nm maxa∈A σ2
a) when σ2

a values are integral, but this algorithm

does not guarantee that the obtained solution is a simple path.

Approximation approaches have been studied as well. Nikolova (2009) devised a fully polynomial time

approximation scheme (FPTAS) for ZP-1 whose complexity is O(log(σ2
max/σ

2
min

) log( fu/ fl)(1/ε2)n2) for

any given approximation ratio 0 < ε < 1, where σmax = maxP∈P σ(P), σmin = minP∈P σ(P), and fu and fl

are upper and lower bounds on (b − μ(P))/σ(P) for all P ∈ P, respectively. The study also proved that an

approximation for ZP-1 with a relative error ε yields an approximation for PSP-1 with the same relative error

in Lemma 3.4.1 of the paper. Therefore, the proposed FPTAS for ZP-1 serves also as an FPTAS for PSP-1.

However, an approximation for ZP-2 with a relative error ε does not necessarily yield an approximation for

PSP-2 with the same relative error: Consider an instance of ZP-2 with z∗ = −1. Suppose that we have a

solution of the instance whose objective function value zε = −1.1. The solution is an approximate solution

of ZP-2 with a relative error ε = 0.1. However, it is not an approximate solution of PSP-2 with the same

relative error because Φ(zε) < (1 − ε) · Φ(z∗), where Φ(·) is the standard normal (cumulative) distribution

function (Recall that PSP-2 isNP-hard in the strong sense, so the existence of an FPTAS for it is unlikely).

Recently, Xiao et al. (2011) proposed an FPTAS for PSP-1 which runs in O((1/ε) ·m2n log n) for any given

approximation ratio 0 < ε < 1.

Table 1 summarizes the previous research results mentioned above together with our contributions given

as follows.

• As mentioned above, PSP, more specifically PSP-2, has been shown to be strongly NP-hard (Xiao

et al., 2011) based on the fact that the longest path problem is stronglyNP-hard in general. However,

the longest path problem is polynomially solvable on directed acyclic graphs, so that the proof by

Xiao et al. (2011) does not mean that PSP-2-DAG is strongly NP-hard. In this paper, we show for

the first time that PSP-2-DAG isNP-hard with μ ∈ Zm
+ (Proposition 1), but it can be solved in pseudo-

polynomial time (Proposition 3). A pseudo-polynomial time exact algorithm for PSP-1 defined on

any graphs with μ ∈ Zm
+ is also proposed (Proposition 2). Furthermore, we show that there exist
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Table 1: Summary of results for PSP and ZP

Reference NP-hardness Exact algorithm FPTAS

Result Problem Restriction Complexity Problem Complexity

Nikolova et al. (2006)* - PSP-1 none exponential - -

Nie & Wu (2009)* - PSP b ∈ Z+ exponential - -

Nikolova (2009)* - ZP σ2 ∈ Zm
+ pseudo-polynomial‡ ZP-1 quadratic in 1/ε

Xiao et al. (2011)* PSP-2: strongly NP-hard� - - - PSP-1 linear in 1/ε

Chen et al. (2017)* - PSP μ ∈ Zm
+ exponential - -

PSP-1 μ ∈ Zm
+ pseudo-polynomial PSP-1 sublinear in 1/ε

Our work PSP-2-DAG: NP-hard PSP-2-DAG μ ∈ Zm
+ pseudo-polynomial

PSP-1 special case† polynomial

(*) : The previous studies did not clarify whether the input data type is rational or not. However, it may well be presumed that the

input data type is rational because they implicitly assume that each elementary arithmetic operation can be done in O(1).

(�) : It does not mean that PSP-2-DAG is NP-hard.

(†) : Each arc can be classified into one of p classes according to its variance for a fixed positive integer p.

(‡) : A solution obtained by the algorithm is not guaranteed to be a simple path.

non-trivial special cases of PSP-1 that can be solved in polynomial time (Proposition 4).

• The FPTAS proposed by Nikolova (2009) for ZP-1 can be readily adapted to any combinatorial opti-

mization problem that is polynomially solvable since the scheme iteratively solves the deterministic

shortest path problem as a subroutine. They approximated the nonlinear level sets of the objective

functions by multiple linear segments. However, the running time of the scheme is not strongly poly-

nomial, that is, it depends on the magnitude of numeric values of input data because the required

numbers of linear segments and level sets are not strongly polynomial. On the other hand, the com-

plexity of the FPTAS proposed by Xiao et al. (2011) is strongly polynomial, but their scheme is

specially devised for PSP-1 so that it can not be readily adapted to other combinatorial optimization

problems. In this paper, we propose a strongly polynomial FPTAS for PSP-1 whose time complex-

ity is O((m + n log n) · m1.5
√

1/ε log (1/ε)) (Theorem 2). Its running time is faster than the FPTAS

proposed by Xiao et al. (2011).

• Another notable contribution of the proposed FPTAS is that its running time is sublinear in 1/ε. Due

to this property, the running time of the proposed FPTAS grows more slowly, compared to that of

the FPTAS proposed by Xiao et al. (2011), as ε gets smaller (Figure 5). In a broader context, there
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Figure 1: Directed acyclic graph for the proof of Proposition 1

exists an FPTAS whose running time is sublinearly dependent on 1/ε (e.g., Knauer et al. (2018) for

an elastic matching problem in computational geometry). However, to the best of our knowledge, it

is difficult to find out a study in the existing literature on combinatorial optimization problems (not

limited to PSP) that proposed an FPTAS whose running time is sublinear in 1/ε. In addition, the

structure of the proposed FPTAS is generic so that it can be adapted to any probability maximizing

combinatorial optimization problems once the corresponding deterministic problem is polynomially

solvable (Theorem 3).

The remainder of this paper is organized as follows. In Section 2, we analyze the computational com-

plexity of PSP-2-DAG, and then present exact algorithms for PSP-1 and PSP-2-DAG along with polynomi-

ally solvable special cases of PSP-1. In Section 3, an FPTAS for PSP-1 is presented. Finally, concluding

remarks with some future research directions are given in Section 4.

2. Computational Complexity and Exact Algorithms

In this section, we first show that PSP-2-DAG is NP-hard with μa ∈ Z+ for all a ∈ A.

Proposition 1. PSP-2-DAG with μ ∈ Zm
+ is NP-hard.

Proof. We show that every instance of the Equal Cardinality Partition (ECP) problem, which is known to be

NP-complete (Karp, 1972; Johnson & Garey, 1979), can be solved by solving an instance of PSP-2-DAG

with μa ∈ Z+ for all a ∈ A. An instance of ECP consists of a finite set W = {1, . . . , 2q} with a size wk ∈ Z+
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for each k ∈ W and a bound C ∈ Z+ such that
∑

k∈W wk = 2C. The problem is to determine if W can be

partitioned into two disjoint sets W1 and W2 such that
∑

k∈W1
wk =

∑
k∈W2

wk = C and |W1| = |W2| = q.

Now, we construct the corresponding instance of PSP-2-DAG as follows. First, we construct a directed

acyclic graph G = (V, A) with q2 + 2q + 3 nodes and 2q2 + 2q + 2 arcs as shown in Figure 1. Here,

we define V = {s, t} ∪ {vi, j : 0 ≤ j ≤ q, j ≤ i ≤ j + q} and A = {(s, v0,0), (v2q,q, t)} ∪ A1 ∪ A2, where

A1 = {(vi, j, vi+1, j) : 0 ≤ j ≤ q, j ≤ i ≤ j + q − 1}, A2 = {(vi, j, vi+1, j+1) : 0 ≤ j ≤ q − 1, j ≤ i ≤ j + q}. For

each arc a = (vi, j, vi+1, j) ∈ A1, we set μa = wi+1 and σ2
a = wi+1. For each arc a = (vi, j, vi+1, j+1) ∈ A2, we set

μa = C and σ2
a = 0. Finally, we set μ(s,v0,0) = μ(v2q,q,t) = 0, σ2

(s,v0,0)
= σ2

(v2q,q,t)
= 0, and b = C(q − 1).

Obviously, exactly q arcs of A1 and q arcs of A2 will be chosen for any s-t path of G, that is,
∑

a∈A1
xa =∑

a∈A2
xa = q and

∑
a∈A2
μaxa = Cq for all x ∈ Xst. Therefore, there is no s-t path P ∈ P such that μ(P) ≤ b.

By noting that μa = σ
2
a for all a ∈ A1, we can see that optimal solutions to the instance of PSP-2-DAG

maximize the objective value of

C(q − 1) −∑a∈A1
μaxa −∑a∈A2

μaxa√∑
a∈A1
σ2

axa

=
−C −∑a∈A1

μaxa√∑
a∈A1
μaxa

.

Let f (X) = (−C−X)/
√

X for X > 0. Then, f (X) is a quasi-concave function on X and it attains the maximum

value at the only point X = C. From the construction of the instance of PSP-2-DAG, we can readily see that

the answer to the given instance of ECP is positive if and only if the obtained optimal solution x∗ satisfies∑
a∈A1
μax∗a = C. Therefore, the result follows.

As mentioned in section 1, Xiao et al. (2011) already showed that PSP-2 is stronglyNP-hard in general.

However, Proposition 1 shows that PSP-2 is stillNP-hard even on directed acyclic graphs with μ ∈ Zm
+ , but

it might not be strongly NP-hard. Indeed, we show in Proposition 3 below that it can be solved in pseudo-

polynomial time. We also show in Proposition 2 below that PSP-1 defined on any graphs with μ ∈ Zm
+ can

be solved in pseudo-polynomial time.

Proposition 2. An optimal solution to PSP-1 defined on a directed graph (not necessarily acyclic) with

b ∈ Q+, μ ∈ Zm
+ , and σ2 ∈ Qm

+ can be obtained in O(mn
b�) pseudo-polynomial time.

Proof. Consider the following subproblem defined for each k ∈ {0, . . . , 
b�}, which is a special case of the

resource constrained shortest path problem (Beasley & Christofides, 1989).

zk = min

⎧⎪⎪⎨⎪⎪⎩
∑
a∈A
σ2

axa :
∑
a∈A
μaxa ≤ k, x ∈ Xst

⎫⎪⎪⎬⎪⎪⎭ , (1)
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where zk = ∞ if the subproblem is infeasible. Let ẑ = max{(b − k)/
√

zk : k = 0, . . . , 
b� such that zk < ∞},
and let x̂ ∈ Xst be the corresponding solution. We claim that Φ(ẑ) and x̂ are the optimal value of PSP-1

and the corresponding optimal solution, respectively, where Φ(·) is the cumulative distribution function of

the standard normal random variable. Suppose that we are given an optimal solution x∗, but there is no

k such that x∗ is optimal to the corresponding subproblem (1). Then, it means k̂ =
∑

a∈A μax∗a ≤ b and∑
a∈A σ2

ax∗a > zk̂ since we assume that there is no k such that x∗ is optimal to zk. It contradicts the optimality

of x∗ since (b − k̂)/
√zk̂ > (b − k̂)/

√∑
a∈A σ2

ax∗a. Therefore, PSP-1 with μ ∈ Zm
+ can be solved by solving

subproblems (1) for all k ∈ {0, . . . , 
b�}.
For each k ∈ {0, . . . , 
b�}, the subproblem (1) can be solved in O(mnk) by applying the dynamic program-

ming (DP) algorithm of Beasley & Christofides (1989). Their DP algorithm guarantees that the obtained

solution is a simple path because there is no negative cycle. If we apply the DP algorithm of Beasley &

Christofides (1989) to the subproblem for some k, it actually solves the subproblems (1) for all k̄ such that

0 ≤ k̄ ≤ k. It means that we can get zk and the corresponding solution for all k ∈ {0, . . . , 
b�} by applying

their DP algorithm to the subproblem (1) for k = 
b�. Then, to find k̂ such that (b − k̂)/
√zk̂ is the maxi-

mum, we compare (b− k)2/zk values to avoid the calculations of square roots, which can be done in O(
b�).
Therefore, an optimal solution to PSP-1 with μ ∈ Zm

+ can be obtained in O(mn
b�).

Based on a similar idea to the case of PSP-1, we can devise a pseudo-polynomial time algorithm for

PSP-2-DAG with μ ∈ Zm
+ and b ∈ Qm

+ .

Proposition 3. An optimal solution of PSP-2-DAG with b ∈ Q+, μ ∈ Zm
+ , and σ2 ∈ Qm

+ can be obtained in

O(mn
∑

a∈A μa) pseudo-polynomial time.

Proof. As in the proof of Proposition 2, consider the following subproblem for each k ∈ {
b� + 1, . . . ,U}
where U =

∑
a∈A μa, similar to (1), defined as

zk = max

⎧⎪⎪⎨⎪⎪⎩
∑
a∈A
σ2

axa :
∑
a∈A
μaxa ≤ k, x ∈ Xst

⎫⎪⎪⎬⎪⎪⎭ , (2)

where zk = −∞ if the subproblem is infeasible. In contrast to PSP-1,
∑

a∈A σ2
a should be maximized because∑

a∈A μaxa > b for all x ∈ Xst. Now, let ẑ = max{(b − k)/
√

zk : k = 
b� + 1, . . . ,U such that zk > −∞}
and x̂ be the corresponding solution. We claim that Φ(ẑ) and x̂ are the optimal value of PSP-2-DAG and

the corresponding optimal solution, respectively. Assume that x∗ is an optimal solution of PSP-2-DAG,

but there is no k such that x∗ is optimal to (2). It means
∑

a∈A σ2
ax∗a < zk̂, where k̂ =

∑
a∈A μax∗a. Then it

contradicts the optimality of x∗ since (b − k̂)/
√zk̂ > (b − k̂)/

√∑
a∈A σ2

ax∗a.
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Since maximizing
∑

a∈A σ2
a is equivalent to minimizing −∑a∈A σ2

a, the subproblem (2) for each k ∈
{
b�+ 1, . . . ,U} is a special case of the resource constrained shortest path problem (Beasley & Christofides,

1989). In this case, all arc lengths are nonpositive because −σ2
a ≤ 0 for all a ∈ A, so that the obtained

solution by the DP algorithm of Beasley & Christofides (1989) is not guaranteed to be a simple path in the

presence of negative cycles. However, there is no negative cycle for PSP-2-DAG because the underlying

graph is assumed to be directed acyclic. Therefore, as in the proof of Proposition 2, we can get zk and the

corresponding solution for all k ∈ {
b� + 1, . . . ,U} by applying the DP algorithm to the subproblem (2) for

k = U, which can be done in O(mnU). Then, to find k̂ such that (b − k̂)/
√zk̂ is the maximum, we compare

instead (b− k)2/zk values to avoid the calculations of square roots, which can be done in O(U). Note that in

this case we have to find k̂ such that (b− k̂)2/zk̂ is the minimum because b− k < 0 for all k = 
b�+ 1, . . . ,U.

Therefore, an optimal solution to PSP-2-DAG with μ ∈ Zm
+ can be obtained in O(mnU).

Now, we show that there exists a nontrivial special case of PSP-1 for which an optimal solution can

be obtained in polynomial time. Suppose that each arc can be classified into one of p classes according to

its variance σ2
a, where p is a fixed positive integer, that is, σ2

a ∈ {σ̄2
1
, σ̄2

2
, . . . , σ̄2

p} for each a ∈ A. For this

special case of PSP-1, which we call PSP-1(p), A can be partitioned into a fixed number of mutually disjoint

subsets A j ⊆ A, where A j = {a ∈ A : σ2
a = σ̄

2
j} for all j ∈ {1, . . . , p}. Then, the optimal objective value of

PSP-1(p) is Φ(z∗), where

z∗ = max

b − ∑
a∈A
μaxa√∑p

j=1
σ̄2

j ·
⎛⎜⎜⎜⎜⎝ ∑

a∈A j

xa

⎞⎟⎟⎟⎟⎠
s.t. x ∈ Xst.

Proposition 4. For a fixed positive integer p, an optimal solution of PSP-1(p) with b ∈ Q+, μ ∈ Qm
+ , and

σ2 ∈ Qm
+ can be obtained in O(mnp+1).

Proof. For a given nonnegative integer vector k = (k1, . . . , kp) such that k j ≤ n − 1 for all j = 1, . . . , p,

consider the following subproblem

zk = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
a∈A
μaxa :

∑
a∈A j

xa ≤ k j, j = 1, . . . , p, x ∈ Xst

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (3)

where zk = ∞ if the subproblem is infeasible. Let Q = {(k1, . . . , kp) ∈ Z
p
+ :

∑p
j=1

k j ≤ n − 1}, and

let ẑ = max{(b − zk)/
√∑p

j=1
σ̄2

j k j : k ∈ Q such that zk < ∞}. Then, it can be readily seen that the
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optimal objective value of PSP-1(p) is equal to Φ(ẑ). The above subproblem (3) is a special case of the

resource constrained shortest path problem, which can be solved in O(mnD) by the DP algorithm proposed

by Beasley & Christofides (1989) because μa ≥ 0 for all a ∈ A, where D = k1 · · · kp is the number of

possible labels. For a given (k1, . . . , kp) ∈ Zp
+, the DP algorithm of Beasley & Christofides (1989) actually

solves the subproblems (3) for all (k̄1, . . . , k̄p) such that k̄ j ≤ k j for all j = 1, . . . , p. It means that, by setting

k j = n − 1 for all j = 1, . . . , p and applying the DP algorithm to the corresponding subproblem (3), we can

get zk and the corresponding solution for all k ∈ Q. Then, to find k̂ such that (b − zk̂)/
√∑p

j=1
σ̄2

j k̂ j is the

maximum, we compare instead (b − zk)2/
∑p

j=1
σ̄2

j k j values to avoid the calculations of square roots, which

can be done in O(D). Therefore, PSP-1(p) can be solved in O(mnp+1) since the number of possible labels is

O(np).

3. FPTAS for PSP-1

In this section, we present a fully polynomial time approximation scheme for PSP-1 with b ∈ Q+,

μ ∈ Qm
+ , and σ2 ∈ Qm

+ , which is defined on a directed graph (not necessarily acyclic). We assume that

σ := (σa(1), . . . , σa(m)) is given as a part of the input data and σ ∈ Qm
+ . Recall that, for PSP-1, there exists a

path P ∈ P such that μ(P) ≤ b, which means ρ∗ ≥ 0.5, where ρ∗ = maxP∈P Pr (l(P) ≤ b). Note also that, for

a given instance of PSP-1, checking whether ρ∗ = 1 or not can be done in polynomial time: For the given

instance of PSP-1, consider a deterministic shortest path problem defined on the modified graph by deleting

arcs with positive variances, which can be solved in polynomial time because μa ≥ 0 for all a ∈ A. It is

clear that ρ∗ = 1 if and only if the length of a shortest s-t path obtained by solving the deterministic shortest

path problem is less than or equal to b. Hence, we assume that ρ∗ ∈ [0.5, 1) without loss of generality.

The basic idea of the proposed FPTAS for PSP-1 is to iteratively solve the associated feasibility problem

defined as follows. For a given 0.5 ≤ ρ < 1, let F(ρ) = {x ∈ Xst : Pr(
∑

a∈A laxa ≤ b) ≥ ρ}, which is

equivalent to {x ∈ Xst :
∑

a∈A μaxa + Φ
−1(ρ)

√∑
a∈A σ2

axa ≤ b}, where Φ−1(·) is the inverse of the standard

normal (cumulative) distribution function.

Definition 1. For a given instance of PSP-1 and a constant ρ ∈ [0.5, 1), PSP-D is to determine whether or

not F(ρ) � ∅, and to find x ∈ F(ρ) if F(ρ) � ∅.

Note that F(ρ2) ⊆ F(ρ1) if ρ1 ≤ ρ2 because Φ−1(·) is monotone increasing. Now, suppose that we know a

lower bound lb and an upper bound ub of ρ∗ for a given instance of PSP-1 such that 0.5 ≤ lb < ub < 1.

Then, according to the answer to PSP-D with ρ = (lb + ub)/2, either ρ∗ ∈ [lb, ρ) or ρ∗ ∈ [ρ, ub); either
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way the length of the resulting interval is half that of [lb, ub). Since ρ∗ ∈ [0.5, 1) for any instance of PSP-1,

starting with [0.5, 1) and repeatedly bisecting the interval reduces the length of interval to ε in O(log(1/ε))

iterations for any given ε > 0. By taking advantage of the fact that ρ∗ ≥ 0.5, it can be shown that a feasible

solution with its objective value ρ̂ such that ρ∗ − ρ̂ ≤ ε is an approximate solution to PSP-1 with a relative

error 2ε, i.e., ρ̂ ≥ (1 − 2ε)ρ∗. Therefore, if we have a polynomial time algorithm for PSP-D, then we have

an FPTAS for PSP-1 by calling the polynomial time algorithm for PSP-D with O(log(1/ε)) different values

of ρ. The issue is that we do not know whether PSP-D is polynomially solvable. However, for any given

α > 0, we can devise an additive |α|-approximation algorithm for PSP-D whose complexity is bounded by

a polynomial function of n, m, and 1/α, which is presented in Section 3.2.

Definition 2. For a given instance of PSP-D and a positive number α ≤ ρ, an additive |α|-approximate

solution to the instance is x ∈ Xst such that Pr(
∑

a∈A laxa ≤ b) ≥ ρ − α. An algorithm for PSP-D is an ad-

ditive |α|-approximation algorithm, if for all instances of PSP-D, it either gives an additive |α|-approximate

solution, or guarantees that {x ∈ Xst : Pr(
∑

a∈A laxa ≤ b) ≥ ρ} = ∅.

Proposition 5. For any given ε > 0, an approximate solution x̂ ∈ Xst to an instance of PSP-1 with ρ̂ =

Pr(
∑

a∈A la x̂a ≤ b) such that ρ̂ ≥ (1 − 2ε)ρ∗ can be obtained by applying an additive |ε/2|-approximation

algorithm to O(log(1/ε)) instances of PSP-D.

Proof. Starting with a feasible solution x0 ∈ Xst with an initial interval [lb0, ub0), we iteratively generate a

sequence of feasible solutions xi ∈ Xst along with updated intervals [lbi, ubi) such that ρ∗ ∈ [lbi, ubi) and

ρ̂i ∈ [lbi, ubi) for i ∈ {0, 1, 2, . . .} until ubT − lbT ≤ ε for some T ≥ 0, where ρ̂i = Pr(
∑

a∈A laxi
a ≤ b) for

i ∈ {0, 1, 2, . . .}. Recall that by calling a deterministic shortest path problem we can find x0 ∈ Xst such that

ρ̂0 ≥ 0.5 for any instance of PSP-1 in polynomial time, and that ρ∗ ∈ [0.5, 1). Hence, it is sufficient to set

lb0 = 0.5 and ub0 = 1.

Now, suppose that, after iteration i ≥ 0, we have xi ∈ Xst such that ρ̂i ∈ [lbi, ubi) and ρ∗ ∈ [lbi, ubi).

Then, at the next iteration i + 1, we apply the additive |ε/2|-approximation algorithm to PSP-D with ρ =

(ubi + lbi + ε/2)/2 which is the midpoint of an adjusted interval [lbi + ε/2, ubi). As a result, we either get an

additive |ε/2|-approximate solution xi+1 ∈ Xst such that ρ̂i+1 ≥ ρ− ε/2 or prove that F(ρ) = ∅. In the former

case, we set lbi+1 = ρ− ε/2 and ubi+1 = ubi, and in the latter we set xi+1 = xi, lbi+1 = lbi, and ubi+1 = ρ (see

Figure 2). In either case, we have (ubi − lbi − ε/2) = 2(ubi+1 − lbi+1 − ε/2) and ρ∗ − ρ̂i+1 ≤ ubi+1 − lbi+1.

Therefore, if we repeat the iteration T times until ρ∗ − ρ̂T ≤ ubT − lbT ≤ ε, then ρ̂T ≥ ρ∗ − ε ≥ ρ∗(1−2ε)

because ρ∗ − ε = ρ∗(1 − ε/ρ∗) and ρ∗ ≥ 1/2. Since (ub0 − lb0 − ε/2) < 0.5, we can see that the number of

11



lbi ubilbi +
ε
2

ρρ − ε
2

if F(ρ) = ∅

if xi+1 exists

Figure 2: Interval update at iteration i

required iterations (T ) does not have to be greater than log(1/ε)� in order to make ubT − lbT − ε/2 ≤ ε/2,

i.e., ubT − lbT ≤ ε.

Proposition 5 means that an FPTAS for PSP-1 can be devised once we have a family of additive |α|-
approximation algorithms for PSP-D over all 0 < α < 1 whose time complexity is bounded by a polynomial

function of n, m, and 1/α. We present such an additive |α|-approximation algorithm for PSP-D, which

is based on a polyhedral approximation of F(ρ) for ρ ∈ [0.5, 1). In the remainder of this section, we

first present a polyhedral approximation of F(ρ) in Section 3.1. Based on the results, an additive |α|-
approximation algorithm for PSP-D whose time complexity is bounded by a polynomial function of n, m,

and 1/α is devised in Section 3.2. Finally, an FPTAS for PSP-1 is presented in Section 3.3.

3.1. Polyhedral approximation of F(ρ)

For a given instance of PSP-D with ρ ∈ [0.5, 1), F(ρ) is equivalent to the following set (Ben-Tal &

Nemirovski, 1999) ⎧⎪⎪⎨⎪⎪⎩x ∈ Xst :
∑
a∈A
ζaxa ≤ b,∀(ζa(1), . . . , ζa(m)) ∈ U(ρ)

⎫⎪⎪⎬⎪⎪⎭ ,
where

U(ρ) =

⎧⎪⎪⎨⎪⎪⎩μ + Σ1/2y :
∑
a∈A

y2
a ≤ (Φ−1(ρ))2, y = (ya(1), . . . , ya(m)) ∈ Rm

+

⎫⎪⎪⎬⎪⎪⎭ and Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ2

a(1)

. . .

σ2
a(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By using a piecewise linear approximation Lr(ya) of the quadratic loss function f (ya) = y2
a for each

a ∈ A for a given positive integer r, as shown in Figure 3, U(ρ) can be approximated as a polyhedron

(Han et al., 2016). Suppose that the interval [0, (Φ−1(ρ))2] along the vertical axis is divided into r seg-

ments, [0, h1
a], [h1

a, h
1
a + h2

a], . . . , [
∑r−1

k=1 hk
a,
∑r

k=1 hk
a], and let the corresponding lengths of divided horizontal

12
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(Φ−1(ρ))2

w1
a w2
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a

h1
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h3
a

h4
a

Figure 3: Piecewise linear approximation for r = 4

intervals be w1
a,w

2
a, . . . ,w

r
a. As can be seen in Figure 3, hk

a is the length of the kth divided segment of the

vertical interval [0, (Φ−1(ρ))2], and the length of the corresponding divided horizontal interval, wk
a, is equal

to

√∑k
i=1 hi

a −
√∑k−1

i=1 hi
a. Then, a piecewise linear approximation Lr(ya) of f (ya) = y2

a over [0,Φ−1(ρ)] can

be defined as

Lr(ya) =
hk

a

wk
a

⎛⎜⎜⎜⎜⎜⎜⎝ya −
k∑

i=1

wi
a

⎞⎟⎟⎟⎟⎟⎟⎠ +
k∑

i=1

hi
a, (4)

for
∑k−1

i=1 wi
a ≤ ya ≤ ∑k

i=1 wi
a and k ∈ R, where

∑r
k=1 wk

a = Φ
−1(ρ) and R = {1, . . . , r} is the set of linear

segments. For a given positive integer r, depending on how the interval [0, (Φ−1(ρ))2] along the vertical

axis (or equivalently the interval [0,Φ−1(ρ)] along the horizontal axis) is divided, infinitely many piecewise

linear approximations are possible. Han et al. (2016) used a piecewise linear approximation for the quadratic

loss function with h1
a = h2

a = · · · = hr
a for the chance-constrained knapsack problem, and Ryu & Park (2021)

mentioned one with w1
a = w2

a = · · · = wr
a for the distributionally robust chance-constrained knapsack

problem. Figure 4 shows these two examples of the piecewise linear approximation defined as (4).

For a given piecewise linear approximation (4) with r linear segments, let us define the maximum

additive error of the approximation as

max
{
Lr(ya) − y2

a : 0 ≤ ya ≤ Φ−1(ρ)
}
. (5)

For our purpose, we use the piecewise linear approximation obtained by equally dividing the interval

[0,Φ−1(ρ)] along the horizontal axis, because it is optimal in terms of the maximum error (5) as stated

in the following proposition. The proof of Proposition 6 is given in the Appendix.
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h1
a

h2
a

h3
a

h4
a

(b) w1
a = w2

a = · · · = wr
a = (Φ−1(ρ))/r

Figure 4: Examples of the piecewise linear approximation for r = 4

Proposition 6. For a given number of linear segments r, the maximum error (5) of a piecewise linear

approximation defined as (4) is minimized when w1
a = w2

a = . . . = wr
a = Φ

−1(ρ)/r, and the minimum error is

(Φ−1(ρ))2/4r2.

Now, for each a ∈ A, let L∗r (ya) be the piecewise linear approximation (4) such that w1
a = w2

a = · · · =
wr

a = Φ
−1(ρ)/r. Then, we defineUr(ρ) and Fr(ρ) as

Ur(ρ) =
{
μ + Σ1/2y :

∑
a∈A L∗r (ya) ≤ (Φ−1(ρ))2, y = (ya(1), . . . , ya(m)) ∈ Rm

+

}
, (6)

Fr(ρ) =
{
x ∈ Xst :

∑
a∈A ζaxa ≤ b,∀(ζa(1), . . . , ζa(m)) ∈ Ur(ρ)

}
. (7)

Since, for each a ∈ A, L∗r (ya) ≥ f (ya) for all ya ∈ [0,Φ−1(ρ)], it is clear thatUr(ρ) ⊆ U(ρ) and F(ρ) ⊆ Fr(ρ).

It means that Fr(ρ) = ∅ implies F(ρ) = ∅. Moreover, if there exists x̄ ∈ Fr(ρ), then ρ − Pr(
∑

a∈A la x̄a ≤
b) ≤ ρ − ρr, where ρr = inf{Pr(

∑
a∈A laxa ≤ b) : x ∈ Fr(ρ)}. Therefore, if we can guarantee ρ − ρr ≤ α

for any given α ∈ (0, 1), we get an additive |α|-approximate solution to PSP-D by checking whether or not

Fr(ρ) � ∅.
For any given number of linear segments r, we show that checking whether or not Fr(ρ) � ∅ can be done

efficiently in Section 3.2. The issue is how many linear segments are needed to make sure that ρ − ρr ≤ α
for any given α ∈ (0, 1). The following Proposition 7, whose proof is given in the Appendix, gives an upper

bound on ρ − ρr which approaches zero as r increases.

Proposition 7. For any given instance of PSP-D, if Fr(ρ) � ∅with the number of linear segments r >
√

m/4,

then ρ − ρr ≤ m√
2πe(4r2−m)

.
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From Proposition 7, we can show that the minimum number of required linear segments r to guarantee

ρ − ρr ≤ α for any α ∈ (0, 1) is Θ(
√

m/α), i.e., Ω(
√

m/α) as well as O(
√

m/α).

Corollary 1. For any given instance of PSP-D and α ∈ (0, 1), if suffices to set

r =
⌈√

m/4 + m/(4α
√

2πe)

⌉

to guarantee that ρ − ρr ≤ α, which is independent of the value of ρ.

Proof. By Proposition 7, it suffices to set r to the smallest integer such that r2 ≥ m/4 + Cm/α, where

C = 1/(4
√

2πe). Note that C < 1/16. Therefore, the minimum r required is Θ(
√

m/α).

Therefore, by Corollary 1, we can get an additive |α|-approximate solution to PSP-D for any given α ∈ (0, 1)

by checking whether or not Fr(ρ) � ∅ with r being set as in Corollary 1. Note that the minimum number of

linear segments to guarantee ρ−ρr ≤ α is independent of ρ, which is sufficient to devise an FPTAS for PSP-

1 given in Section 3.3. Han et al. (2016) also gave similar results for their piecewise linear approximation.

However, they showed the minimum number of linear segments to guarantee ρ − ρr ≤ α is proportional

to Φ−1(ρ)m/α, which goes to the infinity as ρ gets closer to 1. Therefore, our results given in Proposition

7 and Corollary 1 are not direct consequences of the results of Han et al. (2016). Moreover, Corollary 1

significantly reduces the number of linear segments required to guarantee ρ−ρr ≤ α for any given α ∈ (0, 1).

3.2. Additive |α|-approximation algorithm for PSP-D

As mentioned earlier, we claim that for a given number of linear segments r, checking whether or not

Fr(ρ) � ∅ can be done efficiently. To show that, we first give another representation of Fr(ρ) defined as (7)

in the following proposition. The proof of the proposition is given in the Appendix.

Proposition 8.

Fr(ρ) =

⎧⎪⎪⎨⎪⎪⎩x ∈ Xst :
∑
a∈A
μaxa + β(ρ, x, r) ≤ b

⎫⎪⎪⎬⎪⎪⎭ , (8)

where

β(ρ, x, r) = max
z∈Rmr

∑
a∈A

∑
k∈R

dk
axazk

a (9)

s.t.
∑
a∈A

∑
k∈R

hk
azk

a ≤ (Φ−1(ρ))2, (10)

zk
a ≤ 
zk−1

a �, ∀a ∈ A, k ∈ R \ {1}, (11)

0 ≤ zk
a ≤ 1, ∀a ∈ A, k ∈ R, (12)
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and dk
a = σawk

a for all a ∈ A, k ∈ R.

Now, Proposition 9 whose proof is given in the Appendix shows that checking whether or not Fr(ρ) � ∅
can be done by solving mr + 1 deterministic shortest path problems with nonnegative arc lengths.

Let D = {(i, k) : i ∈ IA, k ∈ R}∪{(m+1, 1)}, where (m+1, 1) is an artificial segment with d1
a(m+1)

= 0 and

h1
a(m+1)

an arbitrary positive number. Then, we make a sorted list of the set {dk
a(i)/h

k
a(i) : (i, k) ∈ D}, denoted

as {s1, s2, . . . , smr+1}, in the descending order where dk
a(p)
/hk

a(p)
comes before dl

a(i)/h
l
a(i) if p < i for any pair

of (p, k) and (i, l) with dk
a(p)
/hk

a(p)
= dl

a(i)/h
l
a(i). Let Q = {1, . . . ,mr+ 1} be the index set of the sorted list. For

each q ∈ Q, consider the following problem SPq, which is an deterministic shortest path problem defined

on the same graph as the given instance of PSP-D but with possibly different nonnegative arc lengths.

(SPq) min
∑
a∈A
μaxa +

∑
(i,k)∈Dq

(dk
a(i) − hk

a(i)sq)xa(i)

s.t. x ∈ Xst,

where Dq = {(i, k) ∈ D : dk
a(i)/h

k
a(i) > sq}. Note that (dk

a(i) − hk
a(i)sq) > 0 for all (i, k) ∈ Dq.

Proposition 9. For a given instance of PSP-D and a positive integer r, Fr(ρ) � ∅ if and only if there exists

q ∈ Q = {1, . . . ,mr+1} such that the optimal objective value of SPq is less than or equal to b− (Φ−1(ρ))2sq.

Based on the previous results, we can devise a family of additive |α|-approximation algorithms for PSP-

D over all 0 < α < 1 whose time complexity is bounded by a polynomial function in n, m and 1/α. Note

that, for given ρ ∈ [0.5, 1), Φ−1(ρ) may not be a rational number. Hence, we assume that, for any given

α > 0, a rational number φ ≥ 0 such that 0 ≤ Φ−1(ρ)− φ ≤ α can be obtained in O(1). Note that φ = Φ−1(ρ̃)

for some ρ̃ ∈ [0.5, ρ]. Since the probability density function of the standard normal random variable, f (u),

is strictly decreasing for u ≥ 0 and f (0) < 1/2, it is clear that 0 ≤ ρ − ρ̃ ≤ α/2.

Theorem 1. For a given instance of PSP-D and α ∈ (0, 1), an additive |α|-approximate solution can be

found in O((m + n log n) · m1.5
√

1/α).

Proof. Recall that ρ ∈ [0.5, 1). First, get a rational number φ ≥ 0 such that 0 ≤ Φ−1(ρ) − φ ≤ α. Let

ρ̃ ∈ [0.5, ρ] be a real number such that φ = Φ−1(ρ̃). Since ρ̃ ≤ ρ, Fr(ρ) ⊆ Fr(ρ̃). In the subsequent

computations, only φ is needed, so that we do not have to explicitly compute ρ̃. Next, we compute the

number of linear segments r needed to guarantee ρ̃ − ρr ≤ α/2. According to Corollary 1 with parameter

set to α/2,

r ≥
√

m/4 + m/(2α
√

2πe).
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Since 2
√

2πe > 8, it is clear that

√
m/4 + m/(2α

√
2πe) <

√
m/4 + m/(8α). Hence, it is sufficient to set r to

the smallest integer such that r2 ≥ m/4 +m/8α. Now, to determine whether Fr(ρ̃) = ∅ or not, construct and

solve the corresponding SPq for each q ∈ Q = {1, . . . ,mr+1}. If the optimal objective value of SPq is greater

than b − φ2sq for all q ∈ Q, then Fr(ρ̃) = ∅ by Proposition 9, which means F(ρ) = ∅ because F(ρ) ⊆ Fr(ρ)

and Fr(ρ) ⊆ Fr(ρ̃). Otherwise, we get x̂ ∈ Fr(ρ̃) that satisfies ρ̃ − ρ̂ ≤ α/2, where ρ̂ = Pr(
∑

a∈A la x̂a ≤ b).

Since ρ − ρ̃ ≤ α/2 as explained right before the statement of Theorem 1, ρ − ρ̂ ≤ α, which means x̂ is

an additive |α|-approximate solution to the given instance of PSP-D. Note that the minimum number of

required segments r = Θ(
√

m/α) by Corollary 1, and that SPq for each q ∈ Q is a deterministic shortest

path problem with nonnegative arc lengths which can be solved in O(m + n log n) by a Fibonacci heap

implementation of Dijkstra’s algorithm (Fredman & Tarjan, 1987). Therefore, the total time complexity is

O((m + n log n) · m1.5
√

1/α).

3.3. FPTAS for PSP-1

Now, we can devise an FPTAS for PSP-1 based on Proposition 5 and Theorem 1.

Theorem 2. For any given ε > 0, an approximate solution x̂ ∈ Xst to PSP-1 with ρ̂ = Pr(
∑

a∈A la x̂a ≤ b)

such that ρ̂ ≥ (1 − 2ε)ρ∗ can be obtained in O((m + n log n) · m1.5
√

1/ε log(1/ε)).

Proof. Apply the bisection procedure given in the proof of Proposition 5 with lb0 = 0.5 and ub0 = 1.

At each iteration, apply the additive |ε/2|-approximation algorithm given in the proof of Theorem 1 to the

corresponding instance of PSP-D. Then, by Proposition 5, we can get x̂ ∈ Xst such that ρ̂ ≥ (1 − 2ε)ρ∗,

where ρ̂ = Pr(
∑

a∈A la x̂a ≤ b) in O(log(1/ε)) iterations, and the time complexity of each iteration is O((m +

n log n) · m1.5
√

1/ε) by Theorem 1. Therefore, the result follows.

The time complexity of the FPTAS for PSP-1 given in Theorem 2 is strongly polynomial, that is, it is

independent of the magnitude of numeric values of the given data such as means and variances of arc lengths.

Furthermore, the time complexity is sublinear in 1/ε for ε ∈ (0, 1), since
√

1/ε log(1/ε) = O((1/ε)0.5+β) for

any β ∈ (0, 0.5).

Let T1 and T2 be time complexities of our FPTAS and that of Xiao et al. (2011) to obtain an approximate

solution such that ρ̂ ≥ (1 − ε)ρ∗, respectively. Then T1 ≈ (m + n log2 n) ·m1.5
√

2/ε log2(2/ε) by Theorem 2

and T2 ≈ (1/ε) · m2n log2 n. Figure 5 shows T1/T2 for ε = 10−1, 10−2, 10−3, 10−4 and n = 101, 102, . . . , 105

on sparse (m = n), moderate (m = n1.5) and dense (m = n2) graphs. As can be seen, our scheme is faster

than Xiao et al. (2011), and it gets better as n increases and ε decreases.
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Figure 5: Ratio of the time complexity of our scheme (T1) and Xiao et al. (2011) (T2)

Even though the approximation scheme given in Theorem 2 is devised for PSP-1, its structure, which is

based on the bisection procedure given in Proposition 5 together with the approximation algorithm for the

corresponding feasibility problem, is generic in that it can be applied to other combinatorial optimization

problems.

Suppose that we have a set of items A = {1, . . . ,m} with li ∈ Q+ for each i ∈ A. Consider a combina-

torial optimization problem (CO) to find x ∈ X that minimizes
∑

i∈A lixi, where X ⊆ Bm. When objective

coefficients li for i ∈ A are uncertain and they can be modelled as independent normal random variables,

the corresponding probability maximization problem (PCO) can be defined as the problem of maximizing

Pr(
∑

i∈A lixi ≤ b) over x ∈ X, where b ∈ Q+ and li is an independent normal random variable with μi ∈ Q+
and σi ∈ Q+ for each i ∈ A. PSPP of Halman et al. (2019) also can be generalized by replacing the path set

with the solution set X. In addition, let us define the feasibility problem, PCO-D, corresponding to PCO as

the problem of determining whether or not

F (ρ) =

⎧⎪⎪⎨⎪⎪⎩x ∈ X : Pr

⎛⎜⎜⎜⎜⎜⎝∑
i∈A

lixi ≤ b

⎞⎟⎟⎟⎟⎟⎠ ≥ ρ
⎫⎪⎪⎬⎪⎪⎭

is empty in the same way as that we used to define PSP-D in Definition 1. Then, the following theorem

shows that there exists an FPTAS for PCO, once the corresponding CO is polynomially solvable and there

exists x ∈ X such that
∑

i∈A μixi ≤ b.

Theorem 3. For any instance of PCO, assume that the optimal objective value ρ∗ ≥ 0.5. Then, for any

given ε > 0, an approximate solution x̂ ∈ X with ρ̂ = Pr(
∑

i∈A li x̂i ≤ b) such that ρ̂ ≥ (1 − 2ε)ρ∗ can be

found by applying an algorithm for CO at most O(m1.5
√

1/ε log(1/ε)) times.
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Proof. Let Fr(ρ) = {x ∈ X :
∑

i∈A ζixi ≤ b,∀(ζ1, . . . , ζm) ∈ Ur(ρ)} and

(COq) min
∑
i∈A
μixi +

∑
(i,k)∈Dq

(dk
i − hk

i sq)xi

s.t. x ∈ X.

Then, for any given 0 < α < 1, the minimum number of required linear segments r to guarantee ρ−ρr ≤ α is

Θ(
√

m/α), where ρr = inf{Pr(
∑

i∈A lixi ≤ b) : x ∈ Fr(ρ)}, which can be readily proved by replacing Xst with

X in the proofs of Proposition 7 and Corollary 1. In addition, for a given instance of PCO-D and positive

integer r, whether or not Fr(ρ) � ∅ can be determined by solving deterministic combinatorial optimization

problems COq for q = 1, . . . ,mr+1. This result follows from the proofs of Propositions 8 and 9 by replacing

Xst with X.

Hence, for a given instance of PCO-D and ε > 0, we can find an approximate solution x ∈ X such that

ρ−Pr(
∑

i∈A lixi ≤ b) ≤ ε/2 by solving O(mr) = O(m1.5
√

1/ε) instances of CO in the same way as described

in the proof of Theorem 1. In addition, by applying the bisection procedure given in the proof of Proposition

5 to PCO, we can find an approximate solution x ∈ X to PCO such that Pr(
∑

i∈A lixi ≤ b) ≥ (1 − 2ε)ρ∗ for

any 0 < ε < 1 in O(log(1/ε)) iterations. Therefore, the total number of instances of CO that we need to

solve is at most O(m1.5
√

1/ε log(1/ε)).

The minimum spanning tree problem with uncertain edge lengths (Hiroaki et al., 1981) can be an exam-

ple of Theorem 3. For a given undirected graph with the length of each edge being an independent normal

random variable with rational mean and standard deviation, consider the problem of finding a minimum

spanning tree that maximizes the probability of the total length being within a given limit. Since the deter-

ministic minimum spanning tree problem can be solved in polynomial time, an FPTAS for the problem can

be devised by Theorem 3.

4. Concluding Remarks

In this paper, we consider PSP with b ∈ Q+, μ ∈ Qm
+ , and σ2 ∈ Qm

+ . We showed that PSP-2 with μ ∈ Zm
+

is NP-hard even on directed acyclic graphs in Proposition 1. We also showed that PSP-1 and PSP-2-DAG

with μ ∈ Zm
+ can be solved in pseudo-polynomial time in Proposition 2 and 3, respectively. In addition, we

identified a nontrivial special case of PSP-1 which is polynomially solvable in Proposition 4. Even though

the computational complexity of PSP-1 has not been completely settled down, an FPTAS for PSP-1 whose
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time complexity is strongly polynomial was proposed in Theorem 2. The structure of the proposed FPTAS

is generic so that it can be applied to other combinatorial optimization problems as stated in Theorem 3.

As mentioned before, the computational complexity of PSP-1 is still open, and thus it needs to be

studied further. Improving the time complexity of the proposed FPTAS could also be studied; the number

of deterministic shortest path problems could be reduced by improving the total time complexity for solving

mr+1 shortest path problem instances by exploiting similarities among those instances. In addition, general

cases of PSP where arc lengths are correlated random variables could be studied.
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Appendix

Proof of Proposition 6. Assume that the line segment from (ȳa, ȳ2
a) to (ȳa + wk

a, ȳ
2
a + hk

a) of Figure 6 is the

kth linear segment of Lr(ya). Then,

max
{
Lr(ya) − y2

a : ȳa ≤ ya ≤ ȳa + wk
a

}
= max

{
Lr(ya) − g(ya) : ȳa ≤ ya ≤ ȳa + wk

a

}
,

where g(ya) is the affine function parallel to the kth linear segment and tangent to the loss function f (ya).

ya

Lr(ya)

wk
a

hk
a

(ȳa, ȳ2
a)

(ȳa + wk
a, ȳ

2
a + hk

a)

f (ya)

g(ya)

Figure 6: The kth linear segment of Lr(ya)
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By the definition (4) of Lr(ya), hk
a = (ȳa + wk

a)2 − ȳ2
a = (wk

a)2 + 2ȳawk
a. It is clear that the slope of g(ya) is

hk
a/w

k
a = wk

a + 2ȳa. By noting that the discriminant of the quadratic equation, y2
a − g(ya) = 0, should be 0

in order for g(ya) to be tangent to the loss function f (ya), the vertical intercept of g(ya) can be obtained as

−(wk
a + 2ȳa)2/4. Therefore, g(ya) = (wk

a + 2ȳa)ya − (wk
a + 2ȳa)2/4. That is, the maximum error between

the kth segment and the loss function is ȳ2
a − g(ȳa) = (wk

a)2/4, which depends only on wk
a. Therefore, the

maximum error (5) can be represented as

max
k∈R

(wk
a)2

4
,

and it is minimized when w1
a = w2

a = . . . = wr
a = Φ

−1(ρ)/r, and the minimum is (Φ−1(ρ))2/4r2.

Proof of Proposition 7. We first show thatVr(ρ) ⊆ Ur(ρ) with r >
√

m/4, whereVr(ρ) is defined as

Vr(ρ) =

{
μ + Σ1/2y : 0 ≤ ‖y‖2 ≤ Φ−1(ρ)

√
1 − m

4r2
, y = (ya(1), . . . , ya(m)) ∈ Rm

+

}
.

By Proposition 6, the maximum error of L∗r (·) is (Φ−1(ρ))2/4r2. Hence, it is clear that for all a ∈ A

L∗r (ya) ≤ y2
a +

(Φ−1(ρ))2

4r2
.

Therefore, If ‖y‖2 ≤ Φ−1(ρ)
√

1 − m/4r2,

∑
a∈A

L∗r (ya) ≤
∑
a∈A

y2
a +

m(Φ−1(ρ))2

4r2
≤ (Φ−1(ρ))2,

which means Vr(ρ) ⊆ Ur(ρ). Now, since Vr(ρ) ⊆ Ur(ρ), it is clear that x ∈ Fr(ρ) satisfies the following

constraint

∑
a∈A
ζaxa ≤ b,∀(ζa(1), . . . , ζa(m)) ∈ Vr(ρ),

which is equivalent to

Pr

⎛⎜⎜⎜⎜⎜⎝∑
a∈A

laxa ≤ b

⎞⎟⎟⎟⎟⎟⎠ ≥ Φ(βr),where βr = Φ
−1(ρ)

√
1 − m/4r2.

Therefore, ρr ≥ Φ(βr) and

αr = ρ − ρr ≤ ρ − Φ(βr) =
1√
2π

∫ Φ−1(ρ)

βr

e−t2/2dt

≤ 1√
2π

(Φ−1(ρ) − βr)e−(βr)2/2 (13)

=
1√
2π
Φ−1(ρ)

(
1 −

√
1 − m

4r2

)
e−(Φ−1(ρ))2

(
1− m

4r2

)/
2
.
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Note that the second inequality (13) follows from the fact that e−t2/2 is monotone decreasing for t ≥ 0. Since

ln(·) is a monotone increasing function,

ln (αr) ≤ ln η + ln

(
1 −

√
1 − m

4r2

)
−
(
Φ−1(ρ)

)2 (
1 − m

4r2

)/
2

= ln η + ln

(
1 −

√
1 − m

4r2

)
− πη2

(
1 − m

4r2

)
,

where η = Φ−1(ρ)/
√

2π. Now, let θ = 1 − m/4r2 > 0, then we have

ln (αr) ≤ ln η + ln
(
1 − √θ

)
− πθη2.

If we define a function g(η) = ln η + ln
(
1 − √θ

)
− πθη2, then it is readily verified that g(η) is a con-

cave function with respect to η, and it attains its maximum at η = 1/
√

2πθ. Since η is in fact a mono-

tone increasing function of ρ and η ∈ [0,∞) for all ρ ∈ [0.5, 1), there exists ρ ∈ [0.5, 1) such that

η = Φ−1(ρ)/
√

2π = 1/
√

2πθ. Therefore, the following relation holds.

ln (αr) ≤ ln

(
1√
2πθ

)
− πθ 1

2πθ
+ ln

(
1 − √θ

)
= ln

⎛⎜⎜⎜⎜⎝1 − √θ√
2πθe

⎞⎟⎟⎟⎟⎠ ,
which is equivalent to

αr ≤
1 −

√
1 − m

4r2√
2πe

(
1 − m

4r2

) .
Since

1 −
√

1 − m
4r2√

2πe
(
1 − m

4r2

) ≤
(
1 −

√
1 − m

4r2

) (
1 +

√
1 − m

4r2

)
√

2πe ·
√

1 − m
4r2

≤ m√
2πe(4r2 − m)

,

we finally have the following inequality

αr ≤ m√
2πe(4r2 − m)

.

Proof of Proposition 8. By the definition of Fr(ρ) given as (7), we have only to show that ζ ∈ Ur(ρ) if

and only if there exists z ∈ [0, 1]mr that satisfies (10), (11), and (12) such that ζa = μa +
∑

k∈R dk
azk

a for all

a ∈ A, where ζ = (ζa(1), . . . , ζa(m)) ∈ Rm. Suppose that ζ ∈ Ur(ρ). It means there exists y ∈ Rm
+ such that
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∑
a∈A L∗r (ya) ≤ (Φ−1(ρ))2 and ζa = μa + σaya for all a ∈ A. Let k(a) = min{k ∈ R : ya <

∑k
i=1 wi

a}. If we set

zk
a =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, for k = 1, . . . , k(a) − 1,

ya −∑k−1
i=1 wi

a, for k = k(a),

0, for k = k(a) + 1, . . . , r,

then z ∈ [0, 1]mr satisfies (10), (11), and (12) and ζa = μa +
∑

k∈R dk
azk

a for all a ∈ A. Now, suppose that

we have z ∈ [0, 1]mr that satisfies (10), (11), and (12). If we set ya =
∑r

k=1 wk
azk

a for all a ∈ A, then, by

(10) together with the definition of L∗r (·), it can be readily verified that
∑

a∈A L∗r (ya) ≤ (Φ−1(ρ))2. Hence,

(ζa(1), . . . , ζa(m)) ∈ Ur(ρ), if we set ζa = μa + σaya for all a ∈ A.

Proof of Proposition 9. By the definition of L∗r (ya),we can see that h1
a/w

1
a ≤ h2

a/w
2
a ≤ . . . ≤ hr

a/w
r
a for all

a ∈ A. For any x ∈ Xst, it means (d1
a xa)/h1

a ≥ (d2
a xa)/h2

a ≥ . . . ≥ (dr
axa)/hr

a for all a ∈ A. Therefore, for

any x ∈ Xst, the optimal objective value of β(ρ, x, r) is the same as that of a linear program obtained by

deleting constraints (11). Then, by replacing β(ρ, x, r) with its dual linear program, the constraint of (8) can

be reformulated as the following multiple constraints using dual variables ν ∈ R1
+ and ω ∈ Rmr

+ associated

with (10) and (12), respectively:

∑
a∈A
μaxa + (Φ−1(ρ))2ν +

∑
a∈A

∑
k∈R
ωk

a ≤ b, (14)

hk
aν + ω

k
a ≥ dk

axa, ∀a ∈ A, k ∈ R, (15)

ωk
a ≥ 0, ∀a ∈ A, k ∈ R, (16)

ν ≥ 0. (17)

Therefore, for any given x ∈ Fr(ρ), there exist ν ∈ R1
+ and ω ∈ Rmr

+ that satisfy the constraints (14) and (15).

In addition, in view of the constraints (14), ωk
a for each a ∈ A and k ∈ R needs not be greater than dk

axa−hk
aν.

Therefore, we can replace the constraint (15) for each a ∈ A and k ∈ R with ωk
a = (dk

a − hk
aν)xa, which is

equivalent to ωk
a = max{dk

a − hk
aν, 0}xa, since xa ∈ Bm and ωk

a ≥ 0 for all a ∈ A, k ∈ R. Now, consider the

following set Fr(ρ, ν) for a given ν ∈ R+ defined as

Fr(ρ, ν) =

⎧⎪⎪⎨⎪⎪⎩x ∈ Xst :
∑
a∈A
μaxa +

∑
a∈A

∑
k∈R

max
{
dk

a − hk
aν, 0

}
xa ≤ b − (Φ−1(ρ))2ν

⎫⎪⎪⎬⎪⎪⎭ .
Then, it is clear that Fr(ρ) = ∪ν≥0Fr(ρ, ν). Now, for given x̂ ∈ Fr(ρ), suppose that we have the optimal

extreme point solution ẑ to β(ρ, x̂, r). Let D̂ = {(i, k) ∈ D : ẑk
a(i) > 0}, and let (p, l) = arg min(i,k)∈D̂{dk

a(i)/h
k
a(i) :
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ẑk
a(i) > 0}. Since β(ρ, x̂, r) is a linear program with one knapsack constraint (10), it can be readily verified

that ẑk
a(i) = 1 for all (i, k) ∈ D̂ \ {(p, l)} and ẑl

a(p)
= [(Φ−1(ρ))2 − ∑(i,k)∈D̂\{(p,l)} hk

a(i)]/h
l
a(p)

. Let q̂ be the

index in Q corresponding to (p, l). Now, we set ν̂ = sq̂. Then, for each pair of i ∈ IA and r ∈ R, we

set ω̂k
a(i) = dk

a(i) − hk
a(i)sq̂ if (i, k) ∈ D̂, ω̂k

a(i) = 0 otherwise. Then, it can be verified that ν̂ and ω̂k
a for

all a ∈ A, r ∈ R satisfy the constraints (15) - (17), and
∑

a∈A
∑

k∈R dk
a x̂aẑk

a = (Φ−1(ρ))2ν̂ +
∑

a∈A
∑

k∈R ω̂k
a.

Therefore, if x̂ ∈ Fr(ρ), then x̂ ∈ Fr(ρ, sq̂) for some q̂ ∈ Q, which means Fr(ρ) ⊆ ∪q∈QFr(ρ, sq). Since

Fr(ρ) = ∪ν≥0Fr(ρ, ν), ∪q∈QFr(ρ, sq) ⊆ Fr(ρ), which means Fr(ρ) = ∪q∈QFr(ρ, sq). Finally, observe that

Fr(ρ, sq) for q ∈ Q can be restated as

Fr(ρ, sq) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩x ∈ Xst :
∑
a∈A
μaxa +

∑
(i,k)∈Dq

(dk
a(i) − hk

a(i)sq)xa(i) ≤ b − (Φ−1(ρ))2sq

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
It means that we can determine if Fr(ρ, sq) � ∅ for each q ∈ Q by solving SPq and checking whether the

optimal value is less than or equal to b − (Φ−1(ρ))2sq. Therefore, Fr(ρ) � ∅ if and only if there exists q ∈ Q

such that the optimal objective value of SPq is less than or equal to b − (Φ−1(ρ))2sq.
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