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Abstract

In this study, we consider the robust knapsack problem defined by the
model of Bertsimas and Sim [Operations Research 52(1) pp.35-53, 2004]
where each item weight is uncertain and is defined with an interval.
The problem is to choose a subset of items that is feasible for all of
the cases in which up to a pre-specified number of items are allowed
to take maximum weights simultaneously while maximizing the sum of
profits of chosen items. Several integer optimization formulations for the
problem have been proposed, however the strength of the upper bounds
obtained from their LP-relaxations have not been theoretically analyzed
and compared. In this paper, we establish a theoretical relationship
among those formulations in terms of their LP-relaxations. Especially,
we theoretically prove that previously proposed strong formulations (two
extended formulations and a formulation using submodularity) yield the
same LP-relaxation bound. In addition, through computational tests
with benchmark instances, we analyze the trade-off between the strength
of the lower bounds and the required computation time to solve the
LP-relaxations. The results show that the formulation using submod-
ularity shows competitive theoretical and computational performance.
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1 Introduction

Robust optimization is a representative approach for solving optimization
problems under data uncertainty (Ben-Tal et al, 2009; Bertsimas et al, 2011).
This approach defines an uncertainty set for uncertain data and finds a robust
solution that is feasible for all data in the uncertainty set. Several uncertainty
sets have been proposed, such as the ellipsoidal set (Ben-Tal and Nemirovski,
1999), the polyhedral set (Bertsimas and Sim, 2004), and the permutohull
uncertainty set (Bertsimas and Brown, 2009). Recently, data-driven robust
optimization, which defines uncertainty sets using data, has been studied
(Bertsimas et al, 2018; Chassein et al, 2019).

Bertsimas and Sim (2003, 2004) proposed a polyhedral uncertainty set,
which has been used in numerous studies (Atamtürk, 2006; Fischetti and
Monaci, 2012; Joung and Park, 2018, 2021; Klopfenstein and Nace, 2012; Lee
et al, 2012; Solyalı et al, 2012). In addition, Bertsimas and Sim (2004) pro-
posed a compact linear formulation using the dual of the inner maximization
problem. The robust counterpart of their model maintains the linearity of
the deterministic problem. Moreover, their model has been used to obtain
an approximate solution to solve nonlinear stochastic programming problems
(Han et al, 2016; Joung and Lee, 2020; Klopfenstein and Nace, 2008).

The knapsack problem (KP) is one of the most studied combinatorial
optimization problems (Kellerer et al, 2004). The objective is to select items
to maximize the profit sum while satisfying the knapsack capacity. In this
paper, we focus on the robust knapsack problem (RKP) of the Bertsimas and
Sim (2004) model where item weights have uncertainty. There are n items
N = {1, 2, . . . , n} with profits pi ∈ R+ and uncertain weights ãi for i ∈ N .
The problem decides which items to put in a knapsack, which has a capacity,
b ∈ R+, while maximizing the profit sum. Each uncertain weight of an item
is defined using the robust model of Bertsimas and Sim (2004). For i ∈ N ,
āi ∈ R+ is the nominal value, and di ∈ R+ is the deviation value of ãi. The
non-negative integer parameter, Γ, between 0 and n, controls the robustness
of the model. Each uncertain weight ãi is defined by an interval, [āi, āi + di],
and Γ restricts the maximum number of items that can take maximum weights
simultaneously. The decision variable, xi ∈ B, is 1 if item i is chosen and 0
otherwise for all i ∈ N . Then, RKP is formulated as

(RKP) max
∑
i∈N

pixi

s.t. x ∈ X ,

(1)

where

X =

{
x ∈ B

n :
∑
i∈N

āixi + max
R⊆N,|R|≤Γ

∑
i∈R

dixi ≤ b

}
.

When item weights are integral, Klopfenstein and Nace (2008) and Monaci
et al (2013) proposed dynamic programming algorithms to solve RKP. In this
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case, RKP can be solved in pseudo-polynomial time, O(nΓb). Also, RKP can
be solved by solving multiple deterministic KPs. For instance, Bertsimas and
Sim (2003) solved RKP by solving n + 1 KPs. Lee et al (2012) proved that
the number of n+1 can be reduced to n−Γ+1. Then, Lee and Kwon (2014)
reduced the number of KPs to �(n− Γ)/2�+ 1.

Some previous formulations for robust optimization problems can be
applied to formulate the solution set X of RKP. Fischetti and Monaci (2012)
compared the compact formulation of Bertsimas and Sim (2004) and the
cutting-plane approach where each cut represents robustness. The number of
cuts is exponential, and each cut can be separated in polynomial time. Further-
more, we can apply strong formulations of Atamtürk (2006) for robust mixed
binary programming with uncertain objective coefficients. Atamtürk (2006)
proposed a strong formulation using disjunctive programming. This formu-
lation has an exponential number of constraints, and the separation of each
constraint can be accomplished by solving the shortest-path problem. Subse-
quently, they proposed an extended formulation with a polynomial number of
variables and constraints. In addition, we can use the formulation of Joung
and Park (2021), who studied the solution set of RKP with a single unre-
stricted continuous variable. They defined submodular inequalities that can be
applied to RKP using the submodularity of the robust knapsack set function.
They showed that submodular inequalities are effective when solving robust
0–1 programming problems with multiple robust knapsack constraints. Strong
formulations applicable to RKP have been proposed as above, but no stud-
ies have yet theoretically analyzed and compared the strength of the upper
bounds obtained from their LP-relaxations.

In this paper, we first show that extended formulations of Atamtürk (2006)
and the formulation of Joung and Park (2021) using submodularity have the
same strength in terms of the upper bounds provided by the linear program-
ming (LP) relaxations. This result means that the strong formulation for
RKP can be defined only with the original variables x. Next, we compare the
formulations computationally by solving LP-relaxations of the problem.

The rest of the paper is organized as follows. In Section 2, we introduce
different formulations of RKP. In Section 3, we theoretically compare the dif-
ferent formulations with the objective values of their LP-relaxation. Finally, in
Section 4, we implement the formulations and computationally compare them
by solving their LP-relaxation.
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2 Formulations of RKP

The problem (1) can be reformulated using strong duality of the inner
maximization problem of (1) as follows:

(RKP-Dual) max
∑
i∈N

pixi

s.t.
∑
i∈N

āixi + Γu+
∑
i∈N

vi ≤ b,

u+ vi ≥ dixi, ∀i ∈ N,

v ≥ 0, u ≥ 0,

x ∈ B
n.

(2)

Here v ∈ R
n
+ and u ∈ R+ are dual variables of the inner maximization problem.

Naturally, (1) is equivalent to the following model with exponential linear
constraints (Fischetti and Monaci, 2012):

(RKP-Cut) max
∑
i∈N

pixi

s.t.
∑
i∈N

āixi +
∑
i∈R

dixi ≤ b, ∀R ⊆ N : |R| ≤ Γ,

x ∈ B
n.

(3)

Atamtürk (2006) proposed strong formulations of robust mixed 0-1 pro-
gramming with uncertain objective coefficients. They studied the set

Y = {(x,v, u) ∈ B
n × R

n × R : u+ vi ≥ dixi, ∀i ∈ N,v ≥ 0, u ≥ 0} ,

hence their formulation can be used for a strong formulation of RKP. Note
that X = projx{(x,v, u) ∈ Y :

∑
i∈N āixi + Γu+

∑
i∈N vi ≤ b}. The solution

set of RKP applying the approach of Atamtürk (2006) is defined with original
variables x and dual variables, v and u. A subset S of N can be expressed as
a tuple τ = (τ(1), . . . , τ(s)) according to the non-decreasing order of di values,
where s = |S|. We denote S be a set of all such tuples of N .

Let dτ(0) = 0. Then, 0 = dτ(0) ≤ dτ(1) ≤ dτ(2) ≤ · · · ≤ dτ(s) by definition.

Here, they showed that (x,v, u) ∈ R
2n+1
+ feasible to (2), satisfy

∑
i∈N

āixi + Γu+
∑
i∈N

vi ≤ b, (4)

and
s∑

j=1

(
dτ(j) − dτ(j−1)

)
xτ(j) ≤ u+

s∑
j=1

vτ(j) , ∀τ ∈ S. (5)
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0 1 i j n n+ 1

v∗j − (dj − di)x
∗
j

u∗

Fig. 1 Separation for (5) (Atamtürk, 2006)

The first formulation of Atamtürk (2006) is

(RKP-Atam1) max
∑
i∈N

pixi

s.t. (x,v, u) ∈ P,

x ∈ B
n,

(6)

where

P =
{
(x,v, u) ∈ R

2n+1 : (4), (5), and 0 ≤ x ≤ 1,v ≥ 0, u ≥ 0
}
.

Proposition 1 (Atamtürk, 2006) Let

P ′ =
{
(x,v, u) ∈ R

2n+1 : (5), and 0 ≤ x ≤ 1,v ≥ 0, u ≥ 0
}
.

Then,

P ′ = conv(Y).

Corollary 2

X = projx(P) ∩ B
n.

Proposition 3 (Atamtürk, 2006) The constraint, (5), can be separated by solving the
shortest-path problem defined on a graph, as shown in Figure 2. The graph contains
nodes from 0 to n + 1 and arcs (i, j) for 0 ≤ i < j ≤ n + 1. For a given fractional
solution, (x∗,v∗, u∗), the length of each arc, (i, j), is v∗j − (dj − di)x

∗
j if j ∈ [1, n]

and u∗ if j = n+ 1. If the length of the shortest path from 0 to n+ 1 is less than 0,
it gives a violated inequality (5).

Furthermore, they proposed an extended formulation of (6) with additional
variables w ∈ R

n+2. Assume that items are sorted in non-decreasing order of
di values. They defined the following extended set:
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Q′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
(x,v, u,w) ∈ R

3n+3 :

(dj − di)xj + wj − wi ≤ vj , 0 ≤ i < j ≤ n,

wn+1 − wi ≤ u, 0 ≤ i ≤ n,

wn+1 − w0 ≥ 0,

v ≥ 0,

0 ≤ x ≤ 1,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Proposition 4 (Atamtürk, 2006)

P ′ = projx,v,u(Q′).

Let Q = {(x,v, u,w) ∈ R
3n+3 : (4), and (x,v, u,w) ∈ Q′}.

Corollary 5

P = projx,v,u(Q)

and

X = projx(Q) ∩ B
n.

The second formulation of Atamtürk (2006) is

(RKP-Atam2) max
∑
i∈N

pixi

s.t. (x,v, u,w) ∈ Q,

x ∈ B
n.

(7)

Recently, Joung and Park (2021) proposed a model for RKP with a single
unrestricted continuous variable using submodularity. By setting the continu-
ous variable to be 0, we can apply their approach to RKP. Because we consider
binary variables x, we can interpret x ∈ B

n as a subset of N . For a set func-
tion f : 2N → R, we use f(X) = f(x) for X ⊆ N and an indicator vector
x ∈ B

n of X with a slight abuse of notation. We define the robust knapsack
set function for X ⊆ N as

f(X) =
∑
i∈X

āi + g(X),

where

g(X) = max
R⊆X,|R|≤Γ

∑
i∈R

di.
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The function, g(X), is a submodular set function (Joung and Park, 2021;
Kutschka, 2013). Let

R =

{
x ∈ R

n :
∑
i∈N

(āi + πi)xi ≤ b, ∀π ∈ Πg,0 ≤ x ≤ 1

}
,

and

Πg =

{
π ∈ R

n :
∑
i∈X

πi ≤ g(X), ∀X ⊆ N

}
.

The set Πg is called a submodular polyhedron related to the submodular func-
tion, g. Let d0 = 0. Then, for each permutation, σ = (σ(1), . . . , σ(s)), of S ⊆ N ,
a vector π ∈ Πg can be obtained by

πσ(i)
= dσ(i)

− dσ(i)min
for i = 1, . . . , s, and πi = 0, if i 
∈ S, (8)

where

σ(i)min
=

{
0, if i ≤ Γ,

argminj∈Di−1∪{σ(i)} dj , if i ≥ Γ + 1

and

Di = argmax
R⊆{σ(1),...,σ(i)},|R|≤Γ

∑
j∈R

dj

for i = 1, . . . , s. Let D0 = ∅. The set, Di, for i = 1, . . . , s can be updated as
follows:

Di =

{
Di−1 ∪ {σ(i)}, if i ≤ Γ,

Di−1 ∪ {σ(i)} \ {σ(i)min
}, if i ≥ Γ + 1.

(9)

Proposition 6 (Edmonds, 1970; Joung and Park, 2021) The set of extreme points
of Πg, denoted as ext(Πg), is obtained by (8) with all permutations when S = N .

Proposition 7 For a permutation σ = (σ(1), . . . , σ(s)) of S ⊆ N ,∑
i∈N

(āi + πi)xi ≤ b (10)

is valid for RKP, where π is obtained by (8) for σ.

Proof Let a permutation σ′ of N be the same order as σ in the first s entries, and
the entries after s is arbitrarily determined. Let π′ is obtained by (8) for σ′. By
Proposition 6, π′ is an extreme point of Πg. Also, by (8), πi ≤ π′

i for all i ∈ N . Hence,
π ∈ Πg by the definition of Πg. Then,

∑
i∈X(āi + πi) ≤

∑
i∈X āi + g(X) ≤ b for all

X ⊆ N which corresponds to an element of X . Therefore,
∑

i∈N (āi + πi)xi ≤ b is
valid for all x ∈ X . �



Springer Nature 2021 LATEX template

8 Comparative analysis of LP-relaxations for RKP

Proposition 8 Let

Rg =

⎧⎨
⎩x ∈ R

n :
∑
i∈N

(āi + πi)xi ≤ b, ∀π ∈ ext(Πg),0 ≤ x ≤ 1

⎫⎬
⎭ ,

then,
R = Rg.

Proof Trivially, R ⊆ Rg because ext(Πg) ⊆ Πg. Then, we prove Rg ⊆ R. Assume
that there exists x′ ∈ Rg \ R. Then,

∑
i∈N (āi + πi)x

′
i ≤ b for all π ∈ ext(Πg), but

there exists π′ ∈ Πg \ ext(Πg) such that
∑

i∈N (āi + π′
i)x

′
i > b. It means that

max

⎧⎨
⎩

∑
i∈N

πix
′
i : π ∈ Πg

⎫⎬
⎭ (11)

is greater than b − ∑
i∈N āix

′
i. It contradicts the fact that an optimal solution of

(11) is obtained at an extreme point of Πg (Edmonds, 1970). �

Proposition 9
X = Rg ∩ B

n.

Proof This can be easily proved using the same argument with Joung and Park
(2021). By Propositions 6 and 7,

∑
i∈N (āi + πi)xi ≤ b, ∀π ∈ ext(Πg) are valid

inequalities for X . Therefore, X ⊆ Rg ∩ B
n. Also, for a permutation σ =

(σ(1), . . . , σ(n)) of N , πσ(i) = dσ(i) for i = 1, . . . ,Γ and πσ(i) = dσ(i) − dσ(i)min
≥ 0

for i = Γ+1, . . . , n holds for π obtained by (8). In other words, for each permutation

σ,
∑

i∈N (āi+πi)xi ≤ b is stronger than or equal to
∑

i∈N āixi+
∑Γ

i=1 dσ(i)xσ(i) ≤ b,
which is a constraint of (3). Thus every constraint of (3) is redundant for Rg ∩ B

n

and, therefore, X ⊇ Rg ∩ B
n. �

The formulation of Joung and Park (2021) is

(RKP-Sub) max
∑
i∈N

pixi

s.t. x ∈ Rg ∩ B
n.

3 Comparison of formulations for RKP

In this section, we compare different linear formulations for RKP. The number
of variables and functional constraints (without bound constraints) are sum-
marized in Table 1. Our main result is a comparison between RKP-Atam1
and RKP-Sub, that is, a comparison between R and P. Clearly, conv(X ) ⊆ R
by Propositions 8 and 9, and conv(X ) ⊆ projx(P) by Corollary 2.

To show R ⊇ projx(P), we propose an algorithm to find the inequalities,
(4) and (5), of P corresponding to the given submodular inequality (10) of
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Algorithm 1 Obtaining τ 1, . . . , τΓ

Input: permutation (σ(1), . . . , σ(n)) of N
Output: Corresponding τ 1, . . . , τΓ in S

1: Initialize: li ← 0 for i ∈ N ,Di ← ∅ for i ∈ N∪{0}, τ k ← () for k = 1, . . . ,Γ
2: for i = 1, . . . ,Γ do
3: lσ(i)

← i
4: Di ← Di−1 ∪ {σ(i)}
5: σ(i)min

← 0

6: for i = Γ + 1, . . . , n do
7: σ(i)min

← argminj∈Di∪{σ(i)} dj
8: if σ(i)min

= σ(i) then
9: lσ(i)

← 0
10: else
11: lσ(i)

← lσ(i)min

12: Di ← Di−1 ∪ {σ(i)} \ {σ(i)min
}

13: for i ∈ N do
14: if li > 0 then
15: add i at the end of τ li

Rg, as the following Algorithm 1. For a given permutation σ of N to define
(10), Algorithm 1 gives Γ tuples τ 1, . . . , τΓ ∈ S to define inequalities (5).
After the first loop (from lines 2 to 5) of Algorithm 1, we have lσ(i)

= i for
i = 1, . . . ,Γ and DΓ = {σ(1), . . . , σ(Γ)}. During the second loop (from lines 6
to 12), i.e. for each i ∈ [Γ + 1, n], we can see that the size of Di remains at Γ
and {lj : j ∈ Di} = {1, . . . ,Γ} by lines 11 and 12. Notice that lσ(i)

is equal
to l value of σ(i)min

which is removed from Di when σ(i) is added. Therefore,

we obtain Γ mutually disjoint tuples, τ 1, . . . , τΓ by the last loop (from lines
13 to 15). Also, Di and σ(i)min

obtained through lines 1-12 are identical with
the definitions provided in (8) and (9). Furthermore, among the items with
the same label, l, the value of di is non-decreasing according to the order in
which the items are added. In other words, entries in each τ k, k = 1, . . . ,Γ are
ordered in non-decreasing order of di values.

Table 1 Summary of different formulations for RKP

Models #variables #constraints variables

RKP-Dual (Bertsimas and Sim, 2004) 2n+ 1 n+ 1 x,v, u

RKP-Cut (Fischetti and Monaci, 2012) n
∑Γ

k=0

(n
k

)
x

RKP-Atam1 (Atamtürk, 2006) 2n+ 1 2n + 1 x,v, u

RKP-Atam2 (Atamtürk, 2006) 3n+ 3 n2

2
+ 3n

2
+ 2 x,v, u,w

RKP-Sub (Joung and Park, 2021) n n! x
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Example 1 Let n = 6,Γ = 3 and d = (2, 5, 4, 3, 7, 3). For a permutation, σ =
(1, 2, 3, 4, 5, 6), the submodular inequality is

6∑
i=1

āixi + (2x1 + 5x2 + 4x3 + x4 + 4x5 + 0x6) ≤ b. (12)

By Algorithm 1, we obtain τ 1 = (1, 4, 5), τ 2 = (2), τ 3 = (3). In Algorithm 1,
(l1, l2, l3, l4, l5, l6) = (1, 2, 3, 1, 1, 0). Then, corresponding inequalities, (4) and (5),
are

6∑
i=1

āixi + 3u+

6∑
i=1

vi ≤ b,

2x1 + x4 + 4x5 ≤ u+ v1 + v4 + v5,

5x2 ≤ u+ v2,

4x3 ≤ u+ v3.

We can see that the original submodular inequality (12) can be obtained by
combining resulting inequalities.

Theorem 10
R ⊇ projx(P).

Proof Recall we have R = Rg by Proposition 8. To prove Rg ⊇ projx(P), we show
that any inequality (10) of Rg defined with π obtained by (8) when S = N is satisfied
for all x ∈ projx(P).
Take arbitrary permutation σ of N , and let τ 1, . . . , τΓ ∈ S be outputs of Algorithm
1 with σ as an input. Let tk be the size of τk for k = 1, . . . ,Γ. Then, from the
construction of τ 1, . . . , τΓ, for j = 1, . . . , tk and k = 1, . . . ,Γ,(

dτk
(j)

− dτk
(j−1)

)
xτk

(j)
=

(
dσ(l) − dσ(l)min

)
xσ(l) (13)

with l ∈ N such that σ(l) = τk(j) for k = 1, . . . ,Γ. Also, if i ∈ N is not in any of τk,

for k = 1, . . . ,Γ, then σ(i) = σ(i)min
by the construction (see lines 8-9 and 14-15 of

Algorithm 1). Therefore, for x ∈ projx(P),

∑
i∈N

πixi =
n∑

i=1

(
dσ(i) − dσ(i)min

)
xσ(i) (by the definition of π)

=
Γ∑

k=1

tk∑
j=1

(
dτk

(j)
− dτk

(j−1)

)
xτk

(j)
(by (13))

≤ Γu+
Γ∑

k=1

tk∑
j=1

vτk
(j)

(by (5))

≤ Γu+
∑
i∈N

vi (τ 1, . . . , τΓ are mutually disjoint and v ≥ 0)

≤ b−
∑
i∈N

āixi (by (4))
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is satisfied. Since the choice of the permutation σ of N is arbitrary, for each π ∈
ext(Πg), the corresponding submodular inequality, (ā+ π)Tx ≤ b, can be obtained
by combining inequalities (4) and (5), as described above. Hence any x ∈ projx(P)
satisfies all submodular inequalities with π ∈ ext(Πg); therefore, x ∈ Rg. Now we
can conclude that R = Rg ⊇ projx(P). �

Next, we show R ⊆ projx(P) to conclude R = projx(P).

Theorem 11
R ⊆ projx(P).

Proof We prove that if x′ 	∈ projx(P), then x′ 	∈ R. If
∑

i∈N āix
′
i > b, then it is

trivially satisfied. Assume that
∑

i∈N āix
′
i ≤ b. We can then rewrite the set projx(P)

as follows;

projx(P) =

⎧⎨
⎩x ∈ R

n :
∑
i∈N

āixi +DEV (x) ≤ b,0 ≤ x ≤ 1

⎫⎬
⎭ ,

where

DEV (x)

= min
v,u

⎧⎨
⎩Γu+

∑
i∈N

vi :

s∑
j=1

(dτ(j) − dτ(j−1))xτ(j) ≤ u+

s∑
j=1

vτ(j) , ∀τ ∈ S,v ≥ 0, u ≥ 0

⎫⎬
⎭

= max
α

⎧⎨
⎩

∑
τ∈S

s∑
j=1

(dτ(j) − dτ(j−1))xτ(j)ατ :
∑
τ∈S

ατ ≤ Γ,
∑

τ∈S:τ�i

ατ ≤ 1, ∀i ∈ N,α ≥ 0

⎫⎬
⎭ .

The last equality holds by the strong duality of LP with dual variables, α. Note
that the second term above, the minimization problem, is feasible and bounded. If
x′ ∈ [0, 1]n and x′ 	∈ projx(P), then the maximization version of DEV (x′) has an
optimal solution, α′, such that the corresponding objective function value is bigger
than b−∑

i∈N āix
′
i. For each tuple τ = (τ(1), . . . , τ(s)) ∈ S, since τ can be interpreted

as a permutation of a subset of N , we can obtain π(τ ,1) ∈ Πg using (8) by setting
Γ = 1. Then,

π
(τ ,1)
τ(j) = dτ(j) − dτ(j−1) , ∀j = 1, . . . , s

is the increase of the submodular function g with Γ = 1, when the item, τ(j), is added
to the set, {τ(1), τ(2), . . . , τ(j−1)}. We denote τ ∩ T as the tuple in S consisting of

common elements of the set T and the tuple τ . For any T ⊆ N and any feasible α′,∑
i∈T

∑
τ∈S:τ�i

α′
τπ

(τ ,1)
i =

∑
τ∈S

α′
τ

∑
i∈τ∩T

π
(τ ,1)
i

≤
∑
τ∈S

α′
τ

∑
i∈τ∩T

π
(τ∩T,1)
i (14)

=
∑
τ∈S

α′
τ · dτ∩T

max (15)

≤ max
R⊆T,|R|≤Γ

∑
i∈T

di = g(T ), (16)
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where

dτ∩T
max =

{
maxi∈τ∩T di, if τ ∩ T 	= ∅,
0, otherwise.

(14) and (15) hold by the definition of π
(τ ,1)
i and the diminishing returns property

(Wolsey, 1998) of the submodular function, g with Γ = 1. Also, (16) is satisfied as∑
τ∈S α′

τ ≤ Γ and
∑

τ∈S:τ�i α
′
τ ≤ 1 for all i ∈ T . In other words,

π∗ =

⎛
⎝ ∑

τ∈S:τ�1

α′
τπ

(τ ,1)
1 ,

∑
τ∈S:τ�2

α′
τπ

(τ ,1)
2 , . . . ,

∑
τ∈S:τ�n

α′
τπ

(τ ,1)
n

⎞
⎠ ∈ Πg

by the definition of Πg. Here,

∑
i∈N

π∗
i x

′
i =

∑
τ∈S

s∑
j=1

(dτ(j) − dτ(j−1))x
′
τ(j)α

′
τ = DEV (x′) > b−

∑
i∈N

āix
′
i.

Therefore, if x′ 	∈ projx(P), then x′ 	∈ R. �

Corollary 12
R = projx(P).

Let zmodel
LP be the optimal value of the LP-relaxation of the model. Then,

the following corollary holds by above results:

Corollary 13 zRKP-Dual
LP = zRKP-Cut

LP ≥ zRKP-Atam1
LP = zRKP-Atam2

LP = zRKP-Sub
LP .

4 Computational results

In this section, we computationally compare different formulations (RKP-Dual,
RKP-Atam1, RKP-Atam2, and RKP-Sub) by solving their LP-relaxation.
The tests were conducted using a 3.40-GHz Intel Xeon E3-1240 CPU with 8-
GB RAM. All models were implemented in Java and CPLEX 20.1. The time
limit was 1800 seconds. We tested with the following five RKP types (Joung
and Park, 2021). Here, āi, pi, and di are non-negative integers for each i ∈ N .

• UN (Uncorrelated): āi and pi both are randomly generated in [1, 100].
• WC (Weakly correlated): āi and pi are randomly generated in [1, 100] and
[max{1, āi − 10}, āi + 10], respectively.

• SC (Strongly correlated): āi is randomly generated in [1, 100] and pi =
āi + 10.

• IC (Inverse correlated): pi is randomly selected in [1, 100] and āi =
min{100, pi + 10}.

• SS (Subset sum): āi is randomly generated in [1, 100] and pi = āi.

The deviation value di is randomly generated in [0, 100 − āi], and b =
�∑i∈N āi/2�. We tested when n = 200, 500, Γ = 1, 5, 10. For each combination,
10 random instances were generated, and the average results are reported. We
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compared the LP-relaxations of four different formulations of Table 1 except
RKP-Cut, and the implementation details are as follows:

• RKP-Dual (Bertsimas and Sim, 2004): The LP-relaxation of (2) is solved
by CPLEX with its default settings.

• RKP-Atam1 (Atamtürk, 2006): Atamtürk (2006) compared two separa-
tion approaches for the separation of inequalities, (5). The first approach is
adding multiple violated inequalities, (5), by computing all shortest paths
from node 0 to every other node, i. The second approach is finding a
path of negative cost from 0 to i with the smallest number of arcs using
the Bellman–Ford algorithm. Then, Atamtürk (2006) mentioned that faster
implementation was obtained by the second approach. We solved the LP-
relaxation of (2) and found a violated inequality, (5), using the second
separation approach. We repeatedly solved the LP-relaxed problem and
added a violated constraint until there was no violated inequality.

• RKP-Atam2 (Atamtürk, 2006): Sort items in non-decreasing order of di
value. Then, solve the LP-relaxation of (7) using CPLEX with its default
settings.

• RKP-Sub (Joung and Park, 2021): Solve the LP-relaxation of (2). Then,
sort items in non-increasing order of x∗

i and break ties by increasing order
of di. With this permutation, obtain the submodular inequality, (10), by (8)
with S = N (details are given in Joung and Park, 2021). Repeat solving the
problem and adding a violated submodular inequality, (10), until there is no
violated inequality.

Note that we solved the LP-relaxations of RKP. For the results of RKP with
binary constraints of RKP-Dual, RKP-Atam2 and RKP-Sub, we refer the
readers to Joung and Park (2021). Tables 2-3 report the average results when
n = 200 and n = 500, respectively. Here, “time” is the average computational
time. The number of unfinished instances within the time limit is given as
“#U”. The average number of added violated inequalities are given as “#cuts”,
and the average closed gap “%gap” is calculated as

%gap =
zLP − zmodel

LP

zLP − zOPT
,

where zLP is the objective value of the LP-relaxation of the original model,
RKP-Dual (2).

Here, zOPT was the best objective value of RKP obtained by solving RKP-
Dual (2) within the time limit (1800 seconds). By Corollary 13, %gap of
RKP-Dual is 0, and %gap of other models are same. Therefore, we only
report %gap of RKP-Atam1, RKP-Atam2, RKP-Sub in one column. If
some instances were not finished, we then reported the closed gap within the
time limit in a separate column “%gap” of the corresponding model.

As can be seen, RKP-Dual is solved significantly faster than using other
methods for all instances. Other models substantially improved %gap values
compared to RKP-Dual. When Γ = 1, %gap values are relatively small, but
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Table 2 Comparison of different models for RKP (n = 200)

type Γ
RKP-Dual

%gap
RKP-Atam1 RKP-Atam2 RKP-Sub

time #U time #cuts %gap time time #cuts

UN 1 0.0 33.7 0 0.0 4.5 - 0.2 0.0 2.1
5 0.0 76.9 0 0.0 32.8 - 0.3 0.0 8.1
10 0.0 93.2 0 0.1 110.3 - 0.3 0.0 20.5

WC 1 0.0 96.9 0 0.3 464.1 - 0.2 0.0 14.6
5 0.0 99.3 0 86.4 6074.4 - 0.2 0.1 66.9
10 0.0 99.0 0 238.5 8622.8 - 0.3 0.1 87.1

SC 1 0.0 69.8 0 0.2 272.6 - 0.3 0.0 14.2
5 0.0 98.7 3 654.3 15227.7 95.9 0.3 0.2 143.6
10 0.0 99.3 10 - 18815.6 82.9 0.4 2.1 379.6

IC 1 0.0 51.0 0 0.1 190.7 - 0.3 0.0 7.1
5 0.0 90.2 0 0.9 912.1 - 0.2 0.0 15.0
10 0.0 91.3 0 5.4 1601.4 - 0.2 0.0 50.8

SS 1 0.0 86.2 3 1223.9 15484.7 86.0 0.4 0.1 58.9
5 0.0 92.0 9 1621.0 15811.0 86.9 0.5 0.1 101.9
10 0.0 94.6 10 - 14183.4 77.6 0.5 0.2 143.7

Average 0.0 84.8 2.3 157.3 6520.5 82.0 0.3 0.2 74.3

Table 3 Comparison of different models for RKP (n = 500)

type Γ
RKP-Dual

%gap
RKP-Atam1 RKP-Atam2 RKP-Sub

time #U time #cuts %gap time time #cuts

UN 1 0.0 19.4 0 0.1 3.5 - 1.0 0.0 0.7
5 0.0 80.3 0 0.2 36.7 - 1.1 0.0 7.7
10 0.0 95.3 0 0.2 84.3 - 1.0 0.0 15.0

WC 1 0.0 96.4 0 1.1 572.0 - 0.9 0.0 18.6
5 0.0 99.6 5 694.1 19481.0 98.2 1.1 0.7 209.5
10 0.0 99.8 10 - 21703.3 86.6 1.1 1.9 299.4

SC 1 0.0 65.6 0 0.4 219.6 - 1.0 0.0 11.0
5 0.0 96.3 6 980.4 18208.4 92.5 1.1 0.2 117.9
10 0.0 99.2 10 - 19117.2 66.4 1.2 4.4 435.7

IC 1 0.0 60.1 0 1.0 509.9 - 0.9 0.0 11.4
5 0.0 91.6 0 34.3 2657.5 - 1.0 0.0 26.3
10 0.0 94.6 0 149.0 4894.1 - 1.0 0.1 58.3

SS 1 0.0 88.2 10 - 17700.3 25.3 2.2 0.6 111.2
5 0.0 92.2 10 - 16294.4 25.4 2.6 0.8 148.0
10 0.0 95.5 10 - 15301.2 25.6 2.7 1.7 247.5

Average 0.0 84.9 4.1 104.0 9118.9 68.2 1.3 0.7 114.5

they are close to 100% when Γ = 5 or 10. RKP-Atam1 took longer to solve the
LP-relaxation problem; it could not even solve some instances within the time
limit. Moreover, it added a large number of cuts for some hard instances such as
SC and SS. RKP-Atam2 and RKP-Sub solved the instances in a significantly
shorter duration. RKP-Sub added a smaller number of cuts compared with
RKP-Atam1, and it took slightly less time than RKP-Atam2 on average.



Springer Nature 2021 LATEX template

Comparative analysis of LP-relaxations for RKP 15

5 Conclusion

In this paper, we compared different formulations of RKP theoretically and
computationally. We proved that previously proposed formulations have the
same strength in terms of the objective value of the LP-relaxation. Thus, the
strong formulation of RKP can be defined using only the original variables,
x. In computational tests, we showed that strong formulations could improve
the closed gap substantially. In addition, the strong formulation on the orig-
inal space was solved in a relatively short time, compared with other strong
formulations.
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