2014년 1학기 공학수학1 중간시험

2014년 4월 21일, 09:45-10:45

성명 :

학번 :

1. (45 pts .) For a 4×8 matrix A, we performed eliminations and got a reduced row echelon form R. For each of the following questions, give and justify your answer.

$$
A=\left[\begin{array}{cccccccc}
1 & 2 & 0 & 3 & -1 & 1 & 1 & -2 \\
-3 & -6 & 2 & -7 & 7 & 0 & -6 & 3 \\
1 & 2 & 2 & 5 & 3 & 3 & -1 & 0 \\
2 & 4 & 0 & 6 & -2 & 1 & 3 & 0
\end{array}\right], R=\left[\begin{array}{cccccccc}
1 & 2 & 0 & 3 & -1 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(1) (5 pts.) What is the rank of A ?
(2) (5 pts.) What are the dimensions of $C(A), N(A), C\left(A^{T}\right)$, and $N\left(A^{T}\right)$?
(3) (5 pts.) For a given b, how many solutions does $A x=b$ have? Does it depend on b ?
(4) (5 pts.) Is the set of rows of A linearly independent?
(5) (5 pts.) Does the set of columns 4, 5, 6, and 7 of A form a basis of \mathbf{R}^{4} ?
(6) (5 pts.) Give a basis of $N(A)$.
(7) (5 pts.) Give a basis of $N\left(A^{T}\right)$.
(8) (5 pts.) Give the reduced row echelon form of A^{T}.
(9) (5 pts.) Let $R=E A$. Is E invertible ? If so, give E^{-1}.
2. ($\mathbf{3 0} \mathbf{p t s}$.) The following information is known about an $m \times n$ matrix A. For each of the following questions, give and justify your answer.

$$
A\left[\begin{array}{r}
1 \\
-2 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right], A\left[\begin{array}{l}
0 \\
2 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], A\left[\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
5 \\
10
\end{array}\right], A\left[\begin{array}{l}
3 \\
2 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

(1) (8 pts.) Prove that the set of four vectors $\left[\begin{array}{r}1 \\ -2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 0 \\ 0\end{array}\right]$ is a basis of \mathbf{R}^{4}.
(2) (8 pts.) Give a matrix C and a nonsingular matrix B such that $A=C B^{-1}$.
(3) (8 pts.) Find a basis for the null space of A^{T}.
(4) (6 pts .) What are m, n, and the rank of A ?
3. ($\mathbf{2 5}$ pts.) For each of the following statements, write down \mathbf{T} if it is true, or \mathbf{F} otherwise. And explain why by giving a short proof or a counter- example. (No reason, no credit)
(1) (5 pts.) If A is invertible, $C\left(A^{-1}\right)=C(A)$.
(2) (5 pts.) Suppose $A \in \mathbf{R}^{m \times n}, \operatorname{rank}(A)=m<n$. Then there exists a right inverse of A.
(3) (5 pts.) Let $A=u v^{T}$ where u, v are nonzero vectors in \mathbf{R}^{n}. Then $\operatorname{rank}(A)=1$.
(4) (5 pts.) If $D=A B$ and A is invertible, then $C\left(D^{T}\right)=C\left(B^{T}\right)$.
(5) (5 pts.) For $A \in \mathbf{R}^{m \times n}, N\left(A^{T} A\right)=N(A)$.

